scispace - formally typeset
Search or ask a question
Topic

High-temperature superconductivity

About: High-temperature superconductivity is a research topic. Over the lifetime, 7263 publications have been published within this topic receiving 175377 citations. The topic is also known as: high-temperature superconductivity.


Papers
More filters
Book
01 Jan 1975
TL;DR: In this article, a revised version of the book has been published to incorporate the many new developments in superconductivity, including new topics on high temperature superconductors and nonequilibrium superconductivities.
Abstract: Appropriate for intermediate or advanced courses in superconductivity, this edition has been revised to incorporate the many new developments in superconductivity. Expanded topic coverage includes new chapters on high temperature superconductors and nonequilibrium superconductivity.

7,800 citations

Journal ArticleDOI
06 Mar 1987-Science
TL;DR: The oxide superconductors, particularly those recently discovered that are based on La2CuO4, have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties.
Abstract: The oxide superconductors, particularly those recently discovered that are based on La2CuO4have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties. This insulating phase is proposed to be the long-sought “resonating-valence-bond” state or “quantum spin liquid” hypothesized in 1973. This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration. The preexisting magnetic singlet pairs of the insulating state become charged superconducting pairs when the insulator is doped sufficiently strongly. The mechanism for superconductivity is hence predominantly electronic and magnetic, although weak phonon interactions may favor the state. Many unusual properties are predicted, especially of the insulating state.

5,409 citations

Journal ArticleDOI
W. L. McMillan1
TL;DR: In this paper, the superconducting transition temperature is calculated as a function of the electron-phonon and electron-electron coupling constants within the framework of strong coupling theory.
Abstract: The superconducting transition temperature is calculated as a function of the electron-phonon and electron-electron coupling constants within the framework of the strong-coupling theory. Using this theoretical result, we find empirical values of the coupling constants and the "band-structure" density of states for a number of metals and alloys. It is noted that the electron-phonon coupling constant depends primarily on the phonon frequencies rather than on the electronic properties of the metal. Finally, using these results, one can predict a maximum superconducting transition temperature.

3,895 citations

Journal ArticleDOI
01 Mar 1995-Nature
TL;DR: In this article, the phase of the order parameter is not important for determining the value of the transition temperature Tc and the change of many physical properties brought about by the transition, and the phase fluctuations, both classical and quantum, may have a significant influence on low-temperature properties.
Abstract: THE superconducting state of a metal is characterized by a complex order parameter with an amplitude and a phase In the BCS-Eliashberg mean-field theory1, which is a very good approximation for conventional metals, the phase of the order parameter is un-important for determining the value of the transition temperature Tc and the change of many physical properties brought about by the transition Here we argue that superconductors with low super-conducting carrier density (such as the organic and high-Tc oxide superconductors) are characterized by a relatively small phase 'stiffness9 and poor screening, both of which imply a significantly larger role for phase fluctuations As a consequence, in these mat-erials the transition to the superconducting state may not display typical mean-field behaviour, and phase fluctuations, both classical and quantum, may have a significant influence on low-temperature properties For some quasi-two-dimensional materials, notably underdoped high-temperature superconductors, the onset of long-range phase order controls the gross value of Tc as well as its systematic variation from one material to another

1,533 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the properties of high-mathrm{T}$ oxide superconductors are consistent with a model in which the charge carriers are holes in the O(2p) states and the pairing is mediated by strong coupling to local spin configurations on the Cu sites.
Abstract: It is shown that the properties of high-${\mathrm{T}}_{\mathrm{c}}$ oxide superconductors are consistent with a model in which the charge carriers are holes in the O(2p) states and the pairing is mediated by strong coupling to local spin configurations on the Cu sites.

1,525 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
89% related
Thin film
275.5K papers, 4.5M citations
84% related
Magnetic field
167.5K papers, 2.3M citations
82% related
Band gap
86.8K papers, 2.2M citations
82% related
Amorphous solid
117K papers, 2.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202334
202258
202169
202084
201987
201883