scispace - formally typeset
Search or ask a question
Topic

High-temperature superconductivity

About: High-temperature superconductivity is a research topic. Over the lifetime, 7263 publications have been published within this topic receiving 175377 citations. The topic is also known as: high-temperature superconductivity.


Papers
More filters
Journal ArticleDOI
TL;DR: High-pressure magnetotransport measurements in FeSe are reported, which uncover the dome shape of magnetic phase superseding the nematic order and highlight unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates.
Abstract: The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ∼15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ∼6 GPa the sudden enhancement of superconductivity (Tc≤38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates. The relationship between electronic ordering and superconductivity, crucial to understand high-Tc superconductors, remains elusive. Here, Sun et al. report the pressure-induced dome shape of a magnetic phase superceding the nematic order in FeSe, suggesting competing nature between magnetism and superconductivity.

226 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used scanning tunneling microscopy (STM) to determine directly the influence of individual Ni atoms on the electronic structure of Bi2Sr2CaCu2O8+d.
Abstract: In conventional superconductors, magnetic interactions and magnetic impurity atoms are destructive to superconductivity. By contrast, in some unconventional systems, e.g. superfluid 3He and superconducting UGe2, superconductivity or superfluidity is actually mediated by magnetic interactions. A magnetic mechanism has also been proposed for high temperature superconductivity (HTSC) in which an electron magnetically polarizes its environment resulting in an attractive pairing-interaction for oppositely polarized spins. Since a magnetic impurity atom would apparently not disrupt such a pairing-interaction, it has also been proposed that the weaker influences on HTSC of magnetic Ni impurity atoms compared to those of non-magnetic Zn are evidence for a magnetic mechanism. Here we use scanning tunneling microscopy (STM) to determine directly the influence of individual Ni atoms on the electronic structure of Bi2Sr2CaCu2O8+d. Two local d-wave impurity-states are observed at each Ni. Analysis of their energies surprisingly reveals that the primary quasiparticle scattering effects of Ni atoms are due to non-magnetic interactions. Nonetheless, we also demonstrate that a magnetic moment coexists with unimpaired superconductivity at each Ni site. We discuss the implications of these phenomena, and those at Zn, for the pairing-mechanism.

225 citations

Journal ArticleDOI
TL;DR: In this article, the resistivity and magnetic susceptibility measurements on sintered Bi4Sr3Ca2Cu4O16+x containing 20% by weight of Au, Ag, or Pt-group metals indicate that Au and the Ptgroup metals significantly suppress or eliminate the superconducting transition in BiSr•Ca•Cu•O.
Abstract: The Bi‐Sr‐Ca‐Cu‐O superconductors have been doped with various noble metals and their superconducting properties have been investigated. The resistivity and magnetic susceptibility measurements on sintered Bi4Sr3Ca2Cu4O16+x containing 20% by weight of Au, Ag, or Pt‐group metals indicate that Au and the Pt‐group metals significantly suppress or eliminate the superconducting transition in Bi‐Sr‐Ca‐Cu‐O. Only Ag is found to be benign, maintaining both the 115 and 85 K transitions in the compound. This nonpoisoning behavior of silver is of significant technical importance because of the need for a proper stabilizing normal metal for composite superconductor wire, nonreactive crucible materials for melt processing or crystal growth, and suitable nonpoisonous substrates or barriers for thin‐ or thick‐film superconducting devices.

222 citations

Journal ArticleDOI
01 Feb 1987-EPL
TL;DR: The magnetic susceptibility of ceramic samples in the metallic BaLaCuO system has been measured as a function of temperature as discussed by the authors, and it is found that, for small magnetic fields of less than 0.1 T, the samples become diamagnetic at somewhat lower temperatures than the resistivity drop.
Abstract: The magnetic susceptibility of ceramic samples in the metallic BaLaCuO system has been measured as a function of temperature. This system had earlier shown characteristic sharp drops in resistivity at low temperatures. It is found that, for small magnetic fields of less than 0.1 T, the samples become diamagnetic at somewhat lower temperatures than the resistivity drop. The highest-temperature diamagnetic shift occurs at (33 ± 2) K, and may be related to shielding currents at the onset of percolative superconductivity. The diamagnetic susceptibility can be suppressed with external fields of 1 to 5 T.

222 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
89% related
Thin film
275.5K papers, 4.5M citations
84% related
Magnetic field
167.5K papers, 2.3M citations
82% related
Band gap
86.8K papers, 2.2M citations
82% related
Amorphous solid
117K papers, 2.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202334
202258
202169
202084
201987
201883