scispace - formally typeset
Search or ask a question
Topic

High-temperature superconductivity

About: High-temperature superconductivity is a research topic. Over the lifetime, 7263 publications have been published within this topic receiving 175377 citations. The topic is also known as: high-temperature superconductivity.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the first successful preparation of thin films of Y-Ba-Cu-O superconductors using pulsed excimer laser evaporation of a single bulk material target in vacuum was reported.
Abstract: We report the first successful preparation of thin films of Y‐Ba‐Cu‐O superconductors using pulsed excimer laser evaporation of a single bulk material target in vacuum. Rutherford backscattering spectrometry showed the composition of these films to be close to that of the bulk material. Growth rates were typically 0.1 nm per laser shot. After an annealing treatment in oxygen the films exhibited superconductivity with an onset at 95 K and zero resistance at 85 and 75 K on SrTiO3 and Al2O3 substrates, respectively. This new deposition method is relatively simple, very versatile, and does not require the use of ultrahigh vacuum techniques.

1,122 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported high transition temperature superconductivity in one unitcell (UC) thick FeSe films grown on a Se-etched SrTiO3 (001) substrate by molecular beam epitaxy (MBE).
Abstract: We report high transition temperature superconductivity in one unit-cell (UC) thick FeSe films grown on a Se-etched SrTiO3 (001) substrate by molecular beam epitaxy (MBE). A superconducting gap as large as 20 meV and the magnetic field induced vortex state revealed by in situ scanning tunneling microscopy (STM) suggest that the superconductivity of the 1 UC FeSe films could occur around 77 K. The control transport measurement shows that the onset superconductivity temperature is well above 50 K. Our work not only demonstrates a powerful way for finding new superconductors and for raising TC, but also provides a well-defined platform for systematic studies of the mechanism of unconventional superconductivity by using different superconducting materials and substrates.

1,102 citations

Journal ArticleDOI
02 Aug 2001-Nature
TL;DR: In this paper, angle-resolved photoemission spectroscopy was used to study electron velocities and scattering rates in three different families of copper oxide superconductors.
Abstract: Coupling between electrons and phonons (lattice vibrations) drives the formation of the electron pairs responsible for conventional superconductivity. The lack of direct evidence for electron-phonon coupling in the electron dynamics of the high-transition-temperature superconductors has driven an intensive search for an alternative mechanism. A coupling of an electron with a phonon would result in an abrupt change of its velocity and scattering rate near the phonon energy. Here we use angle-resolved photoemission spectroscopy to probe electron dynamics-velocity and scattering rate-for three different families of copper oxide superconductors. We see in all of these materials an abrupt change of electron velocity at 50-80 meV, which we cannot explain by any known process other than to invoke coupling with the phonons associated with the movement of the oxygen atoms. This suggests that electron-phonon coupling strongly influences the electron dynamics in the high-temperature superconductors, and must therefore be included in any microscopic theory of superconductivity.

1,060 citations

Journal ArticleDOI
01 Jan 1988-Nature
TL;DR: The single-phase perovskite Ba0.6K0.4BiO3 has a magnetically determined onset temperature of 29.8 K, a Tc considerably higher than that of conventional superconductors and surpassed only by copper-containing compounds.
Abstract: It is well known that the breakthrough of Bednorz and Muller1 in discovering superconductivity in (La, Ba)2CuO4 was inspired in part by their knowledge of the superconducting properties of Ba(Pb, Bi)O3 (ref. 2). With a transition temperature, Tc, of ∼12 K, that compound was not generally considered anomalous despite the fact that its Tcis 3–5 times higher than that of traditional superconductors with comparable density of states3–5. The increases in Tc for copper-oxide-based materials continue to generate worldwide excitement, but from both a chemical and theoretical point of view it would also be exciting if high-Tcsuperconductivity were observed in another class of materials. Here we report the results of experiments leading us to the single-phase perovskite Ba0.6K0.4BiO3, which has a magnetically determined onset temperature of 29.8 K—a Tc considerably higher than that of conventional superconductors and surpassed only by copper-containing compounds. Superconductivity in this compound occurs within the framework of a three dimensionally connected bismuth-oxygen array. These results suggest that further research toward exploring the limiting Tcs for bismuth-oxide-based, high-temperature superconductors might be fruitful.

972 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
89% related
Thin film
275.5K papers, 4.5M citations
84% related
Magnetic field
167.5K papers, 2.3M citations
82% related
Band gap
86.8K papers, 2.2M citations
82% related
Amorphous solid
117K papers, 2.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202334
202258
202169
202084
201987
201883