scispace - formally typeset
Search or ask a question
Topic

Hilbert–Huang transform

About: Hilbert–Huang transform is a research topic. Over the lifetime, 5803 publications have been published within this topic receiving 121083 citations.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, a new method for analysing nonlinear and nonstationary data has been developed, which is the key part of the method is the empirical mode decomposition method with which any complicated data set can be decoded.
Abstract: A new method for analysing nonlinear and non-stationary data has been developed. The key part of the method is the empirical mode decomposition method with which any complicated data set can be dec...

16,171 citations

Journal ArticleDOI

[...]

TL;DR: The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF.
Abstract: A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturall...

5,108 citations

Journal ArticleDOI

[...]

TL;DR: This work proposes an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently and is a generalization of the classic Wiener filter into multiple, adaptive bands.
Abstract: During the late 1990s, Huang introduced the algorithm called Empirical Mode Decomposition, which is widely used today to recursively decompose a signal into different modes of unknown but separate spectral bands. EMD is known for limitations like sensitivity to noise and sampling. These limitations could only partially be addressed by more mathematical attempts to this decomposition problem, like synchrosqueezing, empirical wavelets or recursive variational decomposition. Here, we propose an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently. The model looks for an ensemble of modes and their respective center frequencies, such that the modes collectively reproduce the input signal, while each being smooth after demodulation into baseband. In Fourier domain, this corresponds to a narrow-band prior. We show important relations to Wiener filter denoising. Indeed, the proposed method is a generalization of the classic Wiener filter into multiple, adaptive bands. Our model provides a solution to the decomposition problem that is theoretically well founded and still easy to understand. The variational model is efficiently optimized using an alternating direction method of multipliers approach. Preliminary results show attractive performance with respect to existing mode decomposition models. In particular, our proposed model is much more robust to sampling and noise. Finally, we show promising practical decomposition results on a series of artificial and real data.

2,185 citations

Journal ArticleDOI

[...]

TL;DR: It turns out that EMD acts essentially as a dyadic filter bank resembling those involved in wavelet decompositions, and the hierarchy of the extracted modes may be similarly exploited for getting access to the Hurst exponent.
Abstract: Empirical mode decomposition (EMD) has recently been pioneered by Huang et al. for adaptively representing nonstationary signals as sums of zero-mean amplitude modulation frequency modulation components. In order to better understand the way EMD behaves in stochastic situations involving broadband noise, we report here on numerical experiments based on fractional Gaussian noise. In such a case, it turns out that EMD acts essentially as a dyadic filter bank resembling those involved in wavelet decompositions. It is also pointed out that the hierarchy of the extracted modes may be similarly exploited for getting access to the Hurst exponent.

2,100 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, Hilbert spectral analysis is proposed as an alternative to wavelet analysis, which provides not only a more precise definition of particular events in time-frequency space, but also more physically meaningful interpretations of the underlying dynamic processes.
Abstract: We survey the newly developed Hilbert spectral analysis method and its applications to Stokes waves, nonlinear wave evolution processes, the spectral form of the random wave field, and turbulence. Our emphasis is on the inadequacy of presently available methods in nonlinear and nonstationary data analysis. Hilbert spectral analysis is here proposed as an alternative. This new method provides not only a more precise definition of particular events in time-frequency space than wavelet analysis, but also more physically meaningful interpretations of the underlying dynamic processes.

1,783 citations

Network Information
Related Topics (5)
Artificial neural network
207K papers, 4.5M citations
87% related
Feature extraction
111.8K papers, 2.1M citations
85% related
Image processing
229.9K papers, 3.5M citations
82% related
Fuzzy logic
151.2K papers, 2.3M citations
82% related
Cluster analysis
146.5K papers, 2.9M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023355
2022721
2021251
2020276
2019368
2018381