scispace - formally typeset
Search or ask a question
Topic

HiperLAN

About: HiperLAN is a research topic. Over the lifetime, 761 publications have been published within this topic receiving 19926 citations. The topic is also known as: High Performance Radio LAN.


Papers
More filters
Book
31 Dec 1999
TL;DR: In this paper, the authors present a comprehensive introduction to OFDM for wireless broadband multimedia communications and provide design guidelines to maximize the benefits of this important new technology, including modulation and coding, synchronization, and channel estimation.
Abstract: From the Book: The manifestations of the mode of goodness can be experienced when all the gates of the body are illuminated by knowledge The Bhagavad Gita (14.11) During the joint supervision of a Master's thesis "The Peak-to-Average Power Ratio of OFDM," of Arnout de Wild from Delft University of Technology, The Netherlands, we realized that there was a shortage of technical information on orthogonal frequency division multiplexing (OFDM) in a single reference. Therefore, we decided to write a comprehensive introduction to OFDM. This is the first book to give a broad treatment to OFDM for mobile multimedia communications. Until now, no such book was available in the market. We have attempted to fill this gap in the literature. Currently, OFDM is of great interest by the researchers in the Universities and research laboratories all over the world. OFDM has already been accepted for the new wireless local area network standards from IEEE 802.11, High Performance Local Area Network type 2 (HIPERLAN/2) and Mobile Multimedia Access Communication (MMAC) Systems. Also, it is expected to be used for the wireless broadband multimedia communications. OFDM for Wireless Multimedia Communications is the first book to take a comprehensive look at OFDM, providing the design guidelines one needs to maximize benefits from this important new technology. The book gives engineers a solid base for assessing the performance of wireless OFDM systems. It describes the new OFDM-based wireless LAN standards; examines the basics of direct-sequence and frequency-hopping CDMA, helpful in understanding combinations of OFDM and CDMA. It also looks at applications of OFDM, includingdigital audio and video broadcasting, and wireless ATM. Loaded with essential figures and equations, it is a must-have for practicing communications engineers, researchers, academics, and students of communications technology. Chapter 1 presents a general introduction to wireless broadband multimedia communication systems (WBMCS), multipath propagation, and the history of OFDM. A part of this chapter is based on the contributions of Luis Correia from the Technical University of Lisbon, Portugal, Anand Raghawa Prasad from Lucent Technologies, and Hiroshi Harada from the Communications Research Laboratory, Ministry of Posts and Telecommunications, Yokosuka, Japan. Chapters 2 to 5 deal with the basic knowledge of OFDM including modulation and coding, synchronization, and channel estimation, that every post-graduate student as well as practicing engineers must learn. Chapter 2 contains contributions of Rob Kopmeiners from Lucent Technologies on the FFT design. Chapter 6 describes the peak-to-average power problem, as well as several solutions to it. It is partly based on the contribution of Arnout de Wild. Basic principles of CDMA are discussed in Chapter 7 to understand multi carrier CDMA and frequency-hopping OFDMA, which are described in Chapters 8 and 9. Chapter 8 is based on the research contributions from Shinsuke Hara from the University of Osaka, Japan, a postdoctoral student at Delft University of Technology during 1995-96, Chapter 9 is based on a UMTS proposal, with main contributions of Ralf Bohnke from Sony, Germany, David Bhatoolaul and Magnus Sandell from Lucent Technologies, Matthias Wahlquist from Telia Research, Sweden, and Jan-Jaap van de Beek from Lulea University, Sweden. Chapter 10 was written from the viewpoint of top technocrats from industries, government departments, and policy-making bodies. It describes several applications of OFDM, with the main focus on wireless ATM in the Magic WAND project, and the new wireless LAN standards for the 5 GHz band from IEEE 802.11, HIPERLAN/2 and MMAC. It is partly based on contributions from Geert Awater from Lucent Technologies, and Masahiro Morikura and Hitoshi Takanashi from NTT in Japan and California, respectively. We have tried our best to make each chapter quite complete in itself This book will help generate many new research problems and solutions for future mobile multimedia communications. We cannot claim that this book is errorless. Any remarks to improve the text and correct any errors would be highly appreciated.

4,020 citations

Journal ArticleDOI
TL;DR: An overview of important topics and applications in the context of relaying covers different approaches to exploiting the benefits of multihop communications via relays, such as solutions for radio range extension in mobile and wireless broadband cellular networks and solutions to combat shadowing at high radio frequencies.
Abstract: In recent years, there has been an upsurge of interest in multihop-augmented infrastructure-based networks in both the industry and academia, such as the seed concept in 3GPP, mesh networks in IEEE 802.16, and converge extension of HiperLAN/2 through relays or user-cooperative diversity mesh networks. This article, a synopsis of numerous contributions to the working group 4 of the wireless world research forum and other research work, presents an overview of important topics and applications in the context of relaying. It covers different approaches to exploiting the benefits of multihop communications via relays, such as solutions for radio range extension in mobile and wireless broadband cellular networks (trading range for capacity), and solutions to combat shadowing at high radio frequencies. Furthermore, relaying is presented as a means to reduce infrastructure deployment costs. It is also shown that through the exploitation of spatial diversity, multihop relaying can enhance capacity in cellular networks. We wish to emphasize that while this article focuses on fixed relays, many of the concepts presented can also be applied to systems with moving relays.

1,907 citations

Journal ArticleDOI
TL;DR: Two novel equalizers are developed for ZP-OFDM to tradeoff performance with implementation complexity andSimulations tailored to the realistic context of the standard for wireless local area network HIPERLAN/2 illustrate the pertinent tradeoffs.
Abstract: Zero padding (ZP) of multicarrier transmissions has been proposed as an appealing alternative to the traditional cyclic prefix (CP) orthogonal frequency-division multiplexing (OFDM) to ensure symbol recovery regardless of the channel zero locations. In this paper, both systems are studied to delineate their relative merits in wireless systems where channel knowledge is not available at the transmitter. Two novel equalizers are developed for ZP-OFDM to tradeoff performance with implementation complexity. Both CP-OFDM and ZP-OFDM are then compared in terms of transmitter nonlinearities and required power backoff. Next, both systems are tested in terms of channel estimation and tracking capabilities. Simulations tailored to the realistic context of the standard for wireless local area network HIPERLAN/2 illustrate the pertinent tradeoffs.

822 citations

Book
21 Dec 2001
TL;DR: This chapter concludes with a review of Stochastic Processes and Random Variables in a Digital Communication System and Rapid Prototyping of a WLAN System.
Abstract: (NOTE: Each chapter concludes with a Bibliography.) Preface. 1. Background and WLAN Overview. Review of Stochastic Processes and Random Variables. Review of Discrete-Time Signal Processing. Components of a Digital Communication System. OFDM WLAN Overview. Single Carrier Versus OFDM Comparison. 2. Synchronization. Timing Estimation. Frequency Synchronization. Channel Estimation. Clear Channel Assessment. Signal Quality. 3. Modulation and Coding. Modulation. Interleaving. Channel Codes. 4. Antenna Diversity. Background. Receive Diversity. Transmit Diversity. 5. RF Distortion Analysis for OFDM WLAN. Components of the Radio Frequency Subsystem. Predistortion Techniques for Nonlinear Distortion Mitigation. Adaptive Predistortion Techniques. Coding Techniques for Amplifier Nonlinear Distortion Mitigation. Phase Noise. IQ Imbalance. 6. Medium Access Control (MAC)for IEEE 802.ll Networks. MAC Overview. MAC System Architecture. MAC Frame Formats. MAC Data Services. MAC Management Services. MAC Management Information Base. 7. Medium Access Control (MAC) for HiperLAN/2 Networks. Network Architecture. DLC Functions. MAC Overview. Basic MAC Message Formats. PDU Trains. MAC Frame Structure. Building a MAC Frame. MAC Frame Processing. 8. Rapid Prototyping for WLANs. Introduction to Rapid Prototype Design. Good Digital Design Practices. Rapid Prototyping of a WLAN System. Index.

786 citations

Proceedings ArticleDOI
07 Nov 2002
TL;DR: This paper considers the design of power-saving protocols for mobile ad hoc networks (MANETs) that allow mobile hosts to switch to a low-power sleep mode and proposes three power management protocols, namely dominating-awake-interval, periodically-fully-aw Wake-Interval, and quorum-based protocols, which are directly applicable to IEEE 802.11-based MANETs.
Abstract: Power-saving is a critical issue for almost all kinds of portable devices. In this paper, we consider the design of power-saving protocols for mobile ad hoc networks (MANETs) that allow mobile hosts to switch to a low-power sleep mode. The MANETs being considered in this paper are characterized by unpredictable mobility, multi-hop communication, and no clock synchronization mechanism. In particular, the last characteristic would complicate the problem since a host has to predict when another host will wake up to receive packets. We propose three power management protocols, namely dominating-awake-interval, periodically-fully-awake-interval, and quorum-based protocols, which are directly applicable to IEEE 802.11-based MANETs. As far as we know, the power management problem for multi-hop MANETs has not been seriously addressed in the literature. Existing standards, such as IEEE 802.11, HIPERLAN, and Bluetooth, all assume that the network is fully connected or there is a clock synchronization mechanism. Extensive simulation results are presented to verify the effectiveness of the proposed protocols.

468 citations


Network Information
Related Topics (5)
Wireless
133.4K papers, 1.9M citations
84% related
Wireless network
122.5K papers, 2.1M citations
82% related
Antenna (radio)
208K papers, 1.8M citations
80% related
Communications system
88.1K papers, 1M citations
80% related
Network packet
159.7K papers, 2.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
20211
20205
201910
20183
20176