scispace - formally typeset
Search or ask a question
Topic

Histone demethylation

About: Histone demethylation is a research topic. Over the lifetime, 370 publications have been published within this topic receiving 30745 citations.


Papers
More filters
PatentDOI
16 Dec 2005-Cell
TL;DR: In this paper, the authors identify a histone demethylase conserved from S. pombe to human and reveal dynamic regulation of histone methylation by both histonemethylases and demethylases.

3,281 citations

Journal ArticleDOI
TL;DR: 2-HG is a competitive inhibitor of multiple α-KG-dependent dioxygenases, including histone demethylases and the TET family of 5-methlycytosine (5mC) hydroxylases, leading to genome-wide histone and DNA methylation alterations.

2,341 citations

Journal ArticleDOI
16 Feb 2006-Nature
TL;DR: The JmjC domain is identified as a novel demethylase signature motif and a protein demethylation mechanism that is conserved from yeast to human is uncovered.
Abstract: Covalent modification of histones has an important role in regulating chromatin dynamics and transcription. Whereas most covalent histone modifications are reversible, until recently it was unknown whether methyl groups could be actively removed from histones. Using a biochemical assay coupled with chromatography, we have purified a novel JmjC domain-containing protein, JHDM1 (JmjC domain-containing histone demethylase 1), that specifically demethylates histone H3 at lysine 36 (H3-K36). In the presence of Fe(ii) and alpha-ketoglutarate, JHDM1 demethylates H3-methyl-K36 and generates formaldehyde and succinate. Overexpression of JHDM1 reduced the level of dimethyl-H3-K36 (H3K36me2) in vivo. The demethylase activity of the JmjC domain-containing proteins is conserved, as a JHDM1 homologue in Saccharomyces cerevisiae also has H3-K36 demethylase activity. Thus, we identify the JmjC domain as a novel demethylase signature motif and uncover a protein demethylation mechanism that is conserved from yeast to human.

1,993 citations

Journal ArticleDOI
TL;DR: Recent advances in understanding of how lysine methylation functions in these diverse biological processes are summarized, and questions that need to be addressed in the future are raised.
Abstract: Covalent modifications of histone tails have fundamental roles in chromatin structure and function. One such modification, lysine methylation, has important functions in many biological processes that include heterochromatin formation, X-chromosome inactivation and transcriptional regulation. Here, we summarize recent advances in our understanding of how lysine methylation functions in these diverse biological processes, and raise questions that need to be addressed in the future.

1,980 citations

Journal ArticleDOI
15 Sep 2005-Nature
TL;DR: It is shown that lysine-specific demethylase 1 co-localizes with the androgen receptor in normal human prostate and prostate tumour and pargyline is identified as an inhibitor of LSD1, providing a mechanism by which demethylases control specific gene expression.
Abstract: Gene regulation in eukaryotes requires the coordinate interaction of chromatin-modulating proteins with specific transcription factors such as the androgen receptor. Gene activation and repression is specifically regulated by histone methylation status at distinct lysine residues. Here we show that lysine-specific demethylase 1 (LSD1; also known as BHC110) co-localizes with the androgen receptor in normal human prostate and prostate tumour. LSD1 interacts with androgen receptor in vitro and in vivo, and stimulates androgen-receptor-dependent transcription. Conversely, knockdown of LSD1 protein levels abrogates androgen-induced transcriptional activation and cell proliferation. Chromatin immunoprecipitation analyses demonstrate that androgen receptor and LSD1 form chromatin-associated complexes in a ligand-dependent manner. LSD1 relieves repressive histone marks by demethylation of histone H3 at lysine 9 (H3-K9), thereby leading to de-repression of androgen receptor target genes. Furthermore, we identify pargyline as an inhibitor of LSD1. Pargyline blocks demethylation of H3-K9 by LSD1 and consequently androgen-receptor-dependent transcription. Thus, modulation of LSD1 activity offers a new strategy to regulate androgen receptor functions. Here, we link demethylation of a repressive histone mark with androgen-receptor-dependent gene activation, thus providing a mechanism by which demethylases control specific gene expression.

1,666 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
85% related
Regulation of gene expression
85.4K papers, 5.8M citations
84% related
Gene expression
113.3K papers, 5.5M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202134
202034
201939
201821
201725