scispace - formally typeset
Search or ask a question
Topic

Histone H2B

About: Histone H2B is a research topic. Over the lifetime, 952 publications have been published within this topic receiving 56555 citations. The topic is also known as: Histone_H2B & IPR000558.


Papers
More filters
Journal ArticleDOI
14 Oct 2004-Nature
TL;DR: The purification and functional characterization of an E3 ubiquitin ligase complex that is specific for histone H2A is reported, and it is linked to Polycomb silencing, which is important in regulating chromatin dynamics and transcription.
Abstract: Covalent modification of histones is important in regulating chromatin dynamics and transcription1,2. One example of such modification is ubiquitination, which mainly occurs on histones H2A and H2B3. Although recent studies have uncovered the enzymes involved in histone H2B ubiquitination4,5,6 and a ‘cross-talk’ between H2B ubiquitination and histone methylation7,8, the responsible enzymes and the functions of H2A ubiquitination are unknown. Here we report the purification and functional characterization of an E3 ubiquitin ligase complex that is specific for histone H2A. The complex, termed hPRC1L (human Polycomb repressive complex 1-like), is composed of several Polycomb-group proteins including Ring1, Ring2, Bmi1 and HPH2. hPRC1L monoubiquitinates nucleosomal histone H2A at lysine 119. Reducing the expression of Ring2 results in a dramatic decrease in the level of ubiquitinated H2A in HeLa cells. Chromatin immunoprecipitation analysis demonstrated colocalization of dRing with ubiquitinated H2A at the PRE and promoter regions of the Drosophila Ubx gene in wing imaginal discs. Removal of dRing in SL2 tissue culture cells by RNA interference resulted in loss of H2A ubiquitination concomitant with derepression of Ubx. Thus, our studies identify the H2A ubiquitin ligase, and link H2A ubiquitination to Polycomb silencing.

1,685 citations

Journal ArticleDOI
04 Jul 2002-Nature
TL;DR: It is shown that the ubiquitin-conjugating enzyme Rad6 (Ubc2) mediates methylation of histone H3 at lysine 4 (Lys 4) through ubiquitination of H2B at Lys 123 in yeast (Saccharomyces cerevisiae) to reveal a pathway leading to gene regulation through concerted histone modifications on distinct histone tails.
Abstract: In eukaryotes, the DNA of the genome is packaged with histone proteins to form nucleosomal filaments, which are, in turn, folded into a series of less well understood chromatin structures. Post-translational modifications of histone tail domains modulate chromatin structure and gene expression. Of these, histone ubiquitination is poorly understood. Here we show that the ubiquitin-conjugating enzyme Rad6 (Ubc2) mediates methylation of histone H3 at lysine 4 (Lys 4) through ubiquitination of H2B at Lys 123 in yeast (Saccharomyces cerevisiae). Moreover, H3 (Lys 4) methylation is abolished in the H2B-K123R mutant, whereas H3-K4R retains H2B (Lys 123) ubiquitination. These data indicate a unidirectional regulatory pathway in which ubiquitination of H2B (Lys 123) is a prerequisite for H3 (Lys 4) methylation. We also show that an H2B-K123R mutation perturbs silencing at the telomere, providing functional links between Rad6-mediated H2B (Lys 123) ubiquitination, Set1-mediated H3 (Lys 4) methylation, and transcriptional silencing. Thus, these data reveal a pathway leading to gene regulation through concerted histone modifications on distinct histone tails. We refer to this as 'trans-tail' regulation of histone modification, a stated prediction of the histone code hypothesis.

1,096 citations

Journal ArticleDOI
TL;DR: The process of histone H2B monoubiquitination-dependent and -independent hist one H3K4 methylation as a mark of active transcription, enhancer signatures, and developmentally poised genes is discussed and recent findings in this regard are examined.
Abstract: The Saccharomyces cerevisiae Set1/COMPASS was the first histone H3 lysine 4 (H3K4) methylase identified over 10 years ago. Since then, it has been demonstrated that Set1/COMPASS and its enzymatic product, H3K4 methylation, is highly conserved across the evolutionary tree. Although there is only one COMPASS in yeast, Drosophila possesses three and humans bear six COMPASS family members, each capable of methylating H3K4 with nonredundant functions. In yeast, the histone H2B monoubiquitinase Rad6/Bre1 is required for proper H3K4 and H3K79 trimethylations. The machineries involved in this process are also highly conserved from yeast to human. In this review, the process of histone H2B monoubiquitination-dependent and -independent histone H3K4 methylation as a mark of active transcription, enhancer signatures, and developmentally poised genes is discussed. The misregulation of histone H2B monoubiquitination and H3K4 methylation result in the pathogenesis of human diseases, including cancer. Recent findings in this regard are also examined.

883 citations

Journal ArticleDOI
TL;DR: The results suggest that the histone H2B ubiquitylation state is dynamic during transcription, and that the sequence of histone modifications helps to control transcription.
Abstract: Gene activation and repression regulated by acetylation and deacetylation represent a paradigm for the function of histone modifications. We provide evidence that, in contrast, histone H2B monoubiquitylation and its deubiquitylation are both involved in gene activation. Substitution of the H2B ubiquitylation site at Lys 123 (K123) lowered transcription of certain genes regulated by the acetylation complex SAGA. Gene-associated H2B ubiquitylation was transient, increasing early during activation, and then decreasing coincident with significant RNA accumulation. We show that Ubp8, a component of the SAGA acetylation complex, is required for SAGA-mediated deubiquitylation of histone H2B in vitro. Loss of Ubp8 in vivo increased both gene-associated and overall cellular levels of ubiquitylated H2B. Deletion of Ubp8 lowered transcription of SAGA-regulated genes, and the severity of this defect was exacerbated by codeletion of the Gcn5 acetyltransferase within SAGA. In addition, disruption of either ubiquitylation or Ubp8-mediated deubiquitylation of H2B resulted in altered levels of gene-associated H3 Lys 4 methylation and Lys 36 methylation, which have both been linked to transcription. These results suggest that the histone H2B ubiquitylation state is dynamic during transcription, and that the sequence of histone modifications helps to control transcription.

709 citations

Journal ArticleDOI
19 May 2006-Cell
TL;DR: In vitro analyses and corroborating in vivo experiments demonstrate that elongation by RNA polymerase II through the nucleosomal barrier is minimally dependent upon FACT and the recruitment of PAF and the H2B monoubiquitination machinery.

686 citations


Network Information
Related Topics (5)
Phosphorylation
69.3K papers, 3.8M citations
88% related
Protein kinase A
68.4K papers, 3.9M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
87% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Kinase
65.8K papers, 3.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202243
202138
202034
201932
201834