scispace - formally typeset

Topic

Hough transform

About: Hough transform is a(n) research topic. Over the lifetime, 9824 publication(s) have been published within this topic receiving 185841 citation(s).
Papers
More filters

Journal ArticleDOI
David G. Lowe1Institutions (1)
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

42,225 citations


Journal ArticleDOI
Richard O. Duda1, Peter E. Hart1Institutions (1)
TL;DR: It is pointed out that the use of angle-radius rather than slope-intercept parameters simplifies the computation further, and how the method can be used for more general curve fitting.
Abstract: Hough has proposed an interesting and computationally efficient procedure for detecting lines in pictures. This paper points out that the use of angle-radius rather than slope-intercept parameters simplifies the computation further. It also shows how the method can be used for more general curve fitting, and gives alternative interpretations that explain the source of its efficiency.

6,225 citations


Journal ArticleDOI
Dana H. Ballard1Institutions (1)
TL;DR: It is shown how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space, which makes the generalized Houghtransform a kind of universal transform which can beused to find arbitrarily complex shapes.
Abstract: The Hough transform is a method for detecting curves by exploiting the duality between points on a curve and parameters of that curve. The initial work showed how to detect both analytic curves (1,2) and non-analytic curves, (3) but these methods were restricted to binary edge images. This work was generalized to the detection of some analytic curves in grey level images, specifically lines, (4) circles (5) and parabolas. (6) The line detection case is the best known of these and has been ingeniously exploited in several applications. (7,8,9) We show how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping between image space and Hough transform space. Such a mapping can be exploited to detect instances of that particular shape in an image. Furthermore, variations in the shape such as rotations, scale changes or figure ground reversals correspond to straightforward transformations of this mapping. However, the most remarkable property is that such mappings can be composed to build mappings for complex shapes from the mappings of simpler component shapes. This makes the generalized Hough transform a kind of universal transform which can be used to find arbitrarily complex shapes.

4,077 citations


Journal ArticleDOI
Yizong Cheng1Institutions (1)
TL;DR: Mean shift, a simple interactive procedure that shifts each data point to the average of data points in its neighborhood is generalized and analyzed and makes some k-means like clustering algorithms its special cases.
Abstract: Mean shift, a simple interactive procedure that shifts each data point to the average of data points in its neighborhood is generalized and analyzed in the paper. This generalization makes some k-means like clustering algorithms its special cases. It is shown that mean shift is a mode-seeking process on the surface constructed with a "shadow" kernal. For Gaussian kernels, mean shift is a gradient mapping. Convergence is studied for mean shift iterations. Cluster analysis if treated as a deterministic problem of finding a fixed point of mean shift that characterizes the data. Applications in clustering and Hough transform are demonstrated. Mean shift is also considered as an evolutionary strategy that performs multistart global optimization. >

3,554 citations


Journal ArticleDOI
John Illingworth, Josef Kittler1Institutions (1)
TL;DR: This survey will provide a useful guide to quickly acquaint researchers with the main literature in this research area and it seems likely that the Hough transform will be an increasingly used technique.
Abstract: We present a comprehensive review of the Hough transform, HT, in image processing and computer vision. It has long been recognized as a technique of almost unique promise for shape and motion analysis in images containing noisy, missing, and extraneous data but its adoption has been slow due to its computational and storage complexity and the lack of a detailed understanding of its properties. However, in recent years much progress has been made in these areas. In this review we discuss ideas for the efficient implementation of the HT and present results on the analytic and empirical performance of various methods. We also report the relationship of Hough methods and other transforms and consider applications in which the HT has been used. It seems likely that the HT will be an increasingly used technique and we hope that this survey will provide a useful guide to quickly acquaint researchers with the main literature in this research area.

2,004 citations


Network Information
Related Topics (5)
Image processing

229.9K papers, 3.5M citations

92% related
Feature extraction

111.8K papers, 2.1M citations

92% related
Feature (computer vision)

128.2K papers, 1.7M citations

91% related
Image segmentation

79.6K papers, 1.8M citations

91% related
Convolutional neural network

74.7K papers, 2M citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20223
2021212
2020308
2019449
2018419
2017497