scispace - formally typeset

Topic

Human–computer information retrieval

About: Human–computer information retrieval is a(n) research topic. Over the lifetime, 6871 publication(s) have been published within this topic receiving 195816 citation(s).
Papers
More filters

Book
01 Jan 1983
TL;DR: Reading is a need and a hobby at once and this condition is the on that will make you feel that you must read.
Abstract: Some people may be laughing when looking at you reading in your spare time. Some may be admired of you. And some may want be like you who have reading hobby. What about your own feel? Have you felt right? Reading is a need and a hobby at once. This condition is the on that will make you feel that you must read. If you know are looking for the book enPDFd introduction to modern information retrieval as the choice of reading, you can find here.

11,859 citations


Book
01 Jan 2008
Abstract: Class-tested and coherent, this groundbreaking new textbook teaches web-era information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. Written from a computer science perspective by three leading experts in the field, it gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Although originally designed as the primary text for a graduate or advanced undergraduate course in information retrieval, the book will also create a buzz for researchers and professionals alike.

11,798 citations


Book
15 May 1999
Abstract: From the Publisher: This is a rigorous and complete textbook for a first course on information retrieval from the computer science (as opposed to a user-centred) perspective. The advent of the Internet and the enormous increase in volume of electronically stored information generally has led to substantial work on IR from the computer science perspective - this book provides an up-to-date student oriented treatment of the subject.

9,918 citations


01 Jan 1971

3,074 citations


Journal ArticleDOI
Jay Ponte1, W. Bruce Croft1Institutions (1)
01 Aug 1998
TL;DR: It will be shown that probabilistic methods can be used to predict topic changes in the context of the task of new event detection and provide further proof of concept for the use of language models for retrieval tasks.
Abstract: In today's world, there is no shortage of information. However, for a specific information need, only a small subset of all of the available information will be useful. The field of information retrieval (IR) is the study of methods to provide users with that small subset of information relevant to their needs and to do so in a timely fashion. Information sources can take many forms, but this thesis will focus on text based information systems and investigate problems germane to the retrieval of written natural language documents. Central to these problems is the notion of "topic." In other words, what are documents about? However, topics depend on the semantics of documents and retrieval systems are not endowed with knowledge of the semantics of natural language. The approach taken in this thesis will be to make use of probabilistic language models to investigate text based information retrieval and related problems. One such problem is the prediction of topic shifts in text, the topic segmentation problem. It will be shown that probabilistic methods can be used to predict topic changes in the context of the task of new event detection. Two complementary sets of features are studied individually and then combined into a single language model. The language modeling approach allows this problem to be approached in a principled way without complex semantic modeling. Next, the problem of document retrieval in response to a user query will be investigated. Models of document indexing and document retrieval have been extensively studied over the past three decades. The integration of these two classes of models has been the goal of several researchers but it is a very difficult problem. Much of the reason for this is that the indexing component requires inferences as to the semantics of documents. Instead, an approach to retrieval based on probabilistic language modeling will be presented. Models are estimated for each document individually. The approach to modeling is non-parametric and integrates the entire retrieval process into a single model. One advantage of this approach is that collection statistics, which are used heuristically for the assignment of concept probabilities in other probabilistic models, are used directly in the estimation of language model probabilities in this approach. The language modeling approach has been implemented and tested empirically and performs very well on standard test collections and query sets. In order to improve retrieval effectiveness, IR systems use additional techniques such as relevance feedback, unsupervised query expansion and structured queries. These and other techniques are discussed in terms of the language modeling approach and empirical results are given for several of the techniques developed. These results provide further proof of concept for the use of language models for retrieval tasks.

2,671 citations


Network Information
Related Topics (5)
Web page

50.3K papers, 975.1K citations

85% related
Metadata

43.9K papers, 642.7K citations

80% related
Image retrieval

28.1K papers, 651.9K citations

80% related
Ontology (information science)

57K papers, 869.1K citations

79% related
Information system

107.5K papers, 1.8M citations

78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20201
20191
201814
2017117
2016179
2015200