scispace - formally typeset
Search or ask a question
Topic

Human embryonic stem cell line

About: Human embryonic stem cell line is a research topic. Over the lifetime, 330 publications have been published within this topic receiving 24318 citations.


Papers
More filters
Journal ArticleDOI
06 Nov 1998-Science
TL;DR: Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages.
Abstract: Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages. After undifferentiated proliferation in vitro for 4 to 5 months, these cells still maintained the developmental potential to form trophoblast and derivatives of all three embryonic germ layers, including gut epithelium (endoderm); cartilage, bone, smooth muscle, and striated muscle (mesoderm); and neural epithelium, embryonic ganglia, and stratified squamous epithelium (ectoderm). These cell lines should be useful in human developmental biology, drug discovery, and transplantation medicine.

15,555 citations

Journal ArticleDOI
TL;DR: The derivation of pluripotent embryonic stem (ES) cells from human blastocysts is described, providing a model to study early human embryology, an investigational tool for discovery of novel growth factors and medicines, and a potential source of cells for use in transplantation therapy.
Abstract: We describe the derivation of pluripotent embryonic stem (ES) cells from human blastocysts. Two diploid ES cell lines have been cultivated in vitro for extended periods while maintaining expression of markers characteristic of pluripotent primate cells. Human ES cells express the transcription factor Oct-4, essential for development of pluripotential cells in the mouse. When grafted into SCID mice, both lines give rise to teratomas containing derivatives of all three embryonic germ layers. Both cell lines differentiate in vitro into extraembryonic and somatic cell lineages. Neural progenitor cells may be isolated from differentiating ES cell cultures and induced to form mature neurons. Embryonic stem cells provide a model to study early human embryology, an investigational tool for discovery of novel growth factors and medicines, and a potential source of cells for use in transplantation therapy.

2,945 citations

Journal ArticleDOI
TL;DR: The clonal derivation of two human ES cell lines, H9.1 and H.2, demonstrates the pluripotency of single human ES cells, the maintenance of pluripOTency during an extended period of culture, and the long-term self-renewing properties of cultured human ES Cells.

1,680 citations

Journal ArticleDOI
12 Mar 2004-Science
TL;DR: In this article, the derivation of a pluripotent embryonic stem (ES) cell line (SCNT-hES-1) from a cloned human blastocyst was reported.
Abstract: Somatic cell nuclear transfer (SCNT) technology has recently been used to generate animals with a common genetic composition. In this study, we report the derivation of a pluripotent embryonic stem (ES) cell line (SCNT-hES-1) from a cloned human blastocyst. The SCNT-hES-1 cells displayed typical ES cell morphology and cell surface markers and were capable of differentiating into embryoid bodies in vitro and of forming teratomas in vivo containing cell derivatives from all three embryonic germ layers in severe combined immunodeficient mice. After continuous proliferation for more than 70 passages, SCNT-hES-1 cells maintained normal karyotypes and were genetically identical to the somatic nuclear donor cells. Although we cannot completely exclude the possibility that the cells had a parthenogenetic origin, imprinting analyses support a SCNT origin of the derived human ES cells.

721 citations

Journal ArticleDOI
TL;DR: Overall, the results show that a significant fraction of the ENCODE enhancer predictions have regulatory activity, suggesting that histone modification states can reflect the cis-regulatory activity of sequences in the genome, but that specific sequence preferences, such as TF-binding sites, are the causal determinants of cis-Regulatory activity.
Abstract: The histone modification state of genomic regions is hypothesized to reflect the regulatory activity of the underlying genomic DNA. Based on this hypothesis, the ENCODE Project Consortium measured the status of multiple histone modifications across the genome in several cell types and used these data to segment the genome into regions with different predicted regulatory activities. We measured the cis-regulatory activity of more than 2000 of these predictions in the K562 leukemia cell line. We tested genomic segments predicted to be Enhancers, Weak Enhancers, or Repressed elements in K562 cells, along with other sequences predicted to be Enhancers specific to the H1 human embryonic stem cell line (H1-hESC). Both Enhancer and Weak Enhancer sequences in K562 cells were more active than negative controls, although surprisingly, Weak Enhancer segmentations drove expression higher than did Enhancer segmentations. Lower levels of the covalent histone modifications H3K36me3 and H3K27ac, thought to mark active enhancers and transcribed gene bodies, associate with higher expression and partly explain the higher activity of Weak Enhancers over Enhancer predictions. While DNase I hypersensitivity (HS) is a good predictor of active sequences in our assay, transcription factor (TF) binding models need to be included in order to accurately identify highly expressed sequences. Overall, our results show that a significant fraction (-26%) of the ENCODE enhancer predictions have regulatory activity, suggesting that histone modification states can reflect the cis-regulatory activity of sequences in the genome, but that specific sequence preferences, such as TF-binding sites, are the causal determinants of cis-regulatory activity.

235 citations


Network Information
Related Topics (5)
Stem cell
129.1K papers, 5.9M citations
79% related
Cellular differentiation
90.9K papers, 6M citations
79% related
Transcription factor
82.8K papers, 5.4M citations
75% related
Regulation of gene expression
85.4K papers, 5.8M citations
73% related
Programmed cell death
60.5K papers, 3.8M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202139
202022
201918
201821
201720
201686