scispace - formally typeset
Search or ask a question
Topic

Human eye

About: Human eye is a research topic. Over the lifetime, 3009 publications have been published within this topic receiving 72254 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that with this method, using a Hartmann-Shack wave-front sensor, one can obtain a fast, precise, and objective measurement of the aberrations of the eye.
Abstract: A Hartmann-Shack wave-front sensor is used to measure the wave aberrations of the human eye by sensing the wave front emerging from the eye produced by the retinal reflection of a focused light spot on the fovea. Since the test involves the measurements of the local slopes of the wave front, the actual wave front is reconstructed by the use of wave-front estimation with Zernike polynomials. From the estimated Zernike coefficients of the tested wave front the aberrations of the eye are evaluated. It is shown that with this method, using a Hartmann-Shack wave-front sensor, one can obtain a fast, precise, and objective measurement of the aberrations of the eye.

1,294 citations

Journal Article
TL;DR: In this article, the diffraction tomography theorem is adapted to one-dimensional length measurement and the resulting spectral interferometry technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are presented.
Abstract: The diffraction tomography theorem is adapted to one-dimensional length measurement. The resulting spectral interferometry technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are presented.

1,237 citations

Journal ArticleDOI
TL;DR: In this paper, the diffraction tomography theorem is adapted to one-dimensional length measurement and the resulting spectral interferometry technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are presented.

1,218 citations

Journal ArticleDOI
TL;DR: In this paper, optical coherence tomography (OCT) was used for high-resolution cross-sectional imaging of structures in the anterior segment of the human eye in vivo.
Abstract: Objective: To demonstrate a new diagnostic technique, optical coherence tomography, for highresolution cross-sectional imaging of structures in the anterior segment of the human eye in vivo. Optical coherence tomography is a new, noninvasive, noncontact optical imaging modality that has spatial resolution superior to that of conventional clinical ultrasonography ( 90 dB). Design: Survey of intraocular structure and dimension measurements. Setting: Laboratory. Patients: Convenience sample. Main Outcome Measures: Correlation with range of accepted normal intraocular structure profiles and dimensions. Results: Direct in vivo measurements with micrometer-scale resolution were performed of corneal thickness and surface profile (including visualization of the corneal epithelium), anterior chamber depth and angle, and iris thickness and surface profile. Dense nuclear cataracts were successfully imaged through their full thickness in a cold cataract model in calf eyes in vitro. Conclusions: Optical coherence tomography has potential as a diagnostic tool for applications in noncontact biometry, anterior chamber angle assessment, identification and monitoring of intraocular masses and tumors, and elucidation of abnormalities of the cornea, iris, and crystalline lens.

958 citations

Journal ArticleDOI
TL;DR: The first scanning laser ophthalmoscope that uses adaptive optics to measure and correct the high order aberrations of the human eye is presented, permitting axial sectioning of retinal tissue in vivo.
Abstract: We present the first scanning laser ophthalmoscope that uses adaptive optics to measure and correct the high order aberrations of the human eye. Adaptive optics increases both lateral and axial resolution, permitting axial sectioning of retinal tissue in vivo. The instrument is used to visualize photoreceptors, nerve fibers and flow of white blood cells in retinal capillaries.

933 citations


Network Information
Related Topics (5)
Lens (optics)
156.4K papers, 1.2M citations
87% related
Retinal
24.4K papers, 718.9K citations
86% related
Retina
28K papers, 1.2M citations
86% related
Glaucoma
31.5K papers, 738.2K citations
82% related
Visual acuity
32K papers, 797.1K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202352
2022100
202167
2020111
2019123
2018175