scispace - formally typeset
Search or ask a question
Topic

Human genetics

About: Human genetics is a research topic. Over the lifetime, 6164 publications have been published within this topic receiving 159741 citations. The topic is also known as: human genetic studies.


Papers
More filters
Journal Article•DOI•
Anshul Kundaje1, Wouter Meuleman1, Wouter Meuleman2, Jason Ernst3, Misha Bilenky4, Angela Yen1, Angela Yen2, Alireza Heravi-Moussavi4, Pouya Kheradpour1, Pouya Kheradpour2, Zhizhuo Zhang2, Zhizhuo Zhang1, Jianrong Wang2, Jianrong Wang1, Michael J. Ziller2, Viren Amin5, John W. Whitaker, Matthew D. Schultz6, Lucas D. Ward1, Lucas D. Ward2, Abhishek Sarkar2, Abhishek Sarkar1, Gerald Quon2, Gerald Quon1, Richard Sandstrom7, Matthew L. Eaton2, Matthew L. Eaton1, Yi-Chieh Wu1, Yi-Chieh Wu2, Andreas R. Pfenning2, Andreas R. Pfenning1, Xinchen Wang1, Xinchen Wang2, Melina Claussnitzer2, Melina Claussnitzer1, Yaping Liu1, Yaping Liu2, Cristian Coarfa5, R. Alan Harris5, Noam Shoresh2, Charles B. Epstein2, Elizabeta Gjoneska2, Elizabeta Gjoneska1, Danny Leung8, Wei Xie8, R. David Hawkins8, Ryan Lister6, Chibo Hong9, Philippe Gascard9, Andrew J. Mungall4, Richard A. Moore4, Eric Chuah4, Angela Tam4, Theresa K. Canfield7, R. Scott Hansen7, Rajinder Kaul7, Peter J. Sabo7, Mukul S. Bansal10, Mukul S. Bansal1, Mukul S. Bansal2, Annaick Carles4, Jesse R. Dixon8, Kai How Farh2, Soheil Feizi1, Soheil Feizi2, Rosa Karlic11, Ah Ram Kim1, Ah Ram Kim2, Ashwinikumar Kulkarni12, Daofeng Li13, Rebecca F. Lowdon13, Ginell Elliott13, Tim R. Mercer14, Shane Neph7, Vitor Onuchic5, Paz Polak2, Paz Polak15, Nisha Rajagopal8, Pradipta R. Ray12, Richard C Sallari1, Richard C Sallari2, Kyle Siebenthall7, Nicholas A Sinnott-Armstrong2, Nicholas A Sinnott-Armstrong1, Michael Stevens13, Robert E. Thurman7, Jie Wu16, Bo Zhang13, Xin Zhou13, Arthur E. Beaudet5, Laurie A. Boyer1, Philip L. De Jager2, Philip L. De Jager15, Peggy J. Farnham17, Susan J. Fisher9, David Haussler18, Steven J.M. Jones4, Steven J.M. Jones19, Wei Li5, Marco A. Marra4, Michael T. McManus9, Shamil R. Sunyaev15, Shamil R. Sunyaev2, James A. Thomson20, Thea D. Tlsty9, Li-Huei Tsai2, Li-Huei Tsai1, Wei Wang, Robert A. Waterland5, Michael Q. Zhang21, Lisa Helbling Chadwick22, Bradley E. Bernstein2, Bradley E. Bernstein15, Bradley E. Bernstein6, Joseph F. Costello9, Joseph R. Ecker11, Martin Hirst4, Alexander Meissner2, Aleksandar Milosavljevic5, Bing Ren8, John A. Stamatoyannopoulos7, Ting Wang13, Manolis Kellis2, Manolis Kellis1 •
19 Feb 2015-Nature
TL;DR: It is shown that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

5,037 citations

Book•
01 Jan 1980
TL;DR: Genetic and Phenotypic Variation Organisation of Genetic Variation Random Genetic Drift Mutation and the Neutral Theory Darwinian Selection Inbreeding, Population Subdivision, and Migration Molecular Population Genetics Evolutionary Quantitative Genetics Population Genomics Human Population Genetics
Abstract: Genetic and Phenotypic Variation.- Organisation of Genetic Variation.- Random Genetic Drift.- Mutation and the Neutral Theory.- Darwinian Selection.- Inbreeding, Population Subdivision, and Migration.- Molecular Population Genetics.- Evolutionary Quantitative Genetics.- Population Genomics.- Human Population Genetics.

4,810 citations

Journal Article•DOI•
12 Oct 2017-Nature
TL;DR: It is found that local genetic variation affects gene expression levels for the majority of genes, and inter-chromosomal genetic effects for 93 genes and 112 loci are identified, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.
Abstract: Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

3,289 citations

Journal Article•DOI•
TL;DR: Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support research and education in human genomics and the practice of clinical genetics.
Abstract: Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

2,715 citations

Journal Article•DOI•
06 Nov 2014-Cell
TL;DR: Compared microbiotas across >1,000 fecal samples obtained from the TwinsUK population, many microbial taxa whose abundances were influenced by host genetics were identified.

2,310 citations


Network Information
Related Topics (5)
Chromosome
17.5K papers, 660K citations
74% related
Exon
38.3K papers, 1.7M citations
74% related
Gene duplication
11.5K papers, 627.8K citations
73% related
Human genome
11.5K papers, 1M citations
73% related
Gene mapping
15K papers, 808.6K citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023181
2022513
2021128
2020149
2019135
2018124