scispace - formally typeset
Search or ask a question
Topic

Human mitochondrial DNA haplogroup

About: Human mitochondrial DNA haplogroup is a research topic. Over the lifetime, 995 publications have been published within this topic receiving 43034 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This complete mtDNA tree includes previously published as well as newly identified haplogroups, is easily navigable, will be continuously and regularly updated in the future, and is online available at http://www.phylotree.org.
Abstract: Human mitochondrial DNA is widely used as tool in many fields including evolutionary anthropology and population history, medical genetics, genetic genealogy, and forensic science. Many applications require detailed knowledge about the phylogenetic relationship of mtDNA variants. Although the phylogenetic resolution of global human mtDNA diversity has greatly improved as a result of increasing sequencing efforts of complete mtDNA genomes, an updated overall mtDNA tree is currently not available. In order to facilitate a better use of known mtDNA variation, we have constructed an updated comprehensive phylogeny of global human mtDNA variation, based on both coding- and control region mutations. This complete mtDNA tree includes previously published as well as newly identified haplogroups, is easily navigable, will be continuously and regularly updated in the future, and is online available at http://www.phylotree.org. © 2008 Wiley-Liss, Inc.

1,628 citations

Journal ArticleDOI
TL;DR: This review considers the basic principles of mitochondrial genetics which govern both the behaviour and investigation of pathogenic mtDNA mutations summarizing recent advances, and an assessment of the ongoing debate into the role of somatic mt DNA mutations in neurodegenerative disease, ageing and cancer.
Abstract: Since their first association with human disease in 1988, more than 250 pathogenic point mutations and rearrangements of the 16.6 kb mitochondrial genome (mtDNA) have been reported in a spectrum of clinical disorders which exhibit prominent muscle and central nervous system involvement. With novel mutations and disease phenotypes still being described, mtDNA disorders are recognized collectively as common, inherited genetic diseases although relatively little is still known concerning the precise pathophysiological mechanisms that lead to cell dysfunction and pathology. This review considers the basic principles of mitochondrial genetics which govern both the behaviour and investigation of pathogenic mtDNA mutations summarizing recent advances in this area, and an assessment of the ongoing debate into the role of somatic mtDNA mutations in neurodegenerative disease, ageing and cancer.

1,011 citations

Journal ArticleDOI
01 Dec 1996-Genetics
TL;DR: The conclusion that most haplogroups observed in Europe are Caucasoid-specific, and that at least some of them occur at varying frequencies in different Caucasoid populations, is supported.
Abstract: Mitochondrial DNA (mtDNA) sequence variation was examined in Finns, Swedes and Tuscans by PCR amplification and restriction analysis. About 99% of the mtDNAs were subsumed within 10 mtDNA haplogroups (H, I, J, K, M, T, U, V, W, and X) suggesting that the identified haplogroups could encompass virtually all European mtDNAs. Because both hypervariable segments of the mtDNA control region were previously sequenced in the Tuscan samples, the mtDNA haplogroups and control region sequences could be compared. Using a combination of haplogroup-specific restriction site changes and control region nucleotide substitutions, the distribution of the haplogroups was surveyed through the published restriction site polymorphism and control region sequence data of Caucasoids. This supported the conclusion that most haplogroups observed in Europe are Caucasoid-specific, and that at least some of them occur at varying frequencies in different Caucasoid populations. The classification of almost all European mtDNA variation in a number of well defined haplogroups could provide additional insights about the origin and relationships of Caucasoid populations and the process of human colonization of Europe, and is valuable for the definition of the role played by mtDNA backgrounds in the expression of pathological mtDNA mutations

904 citations

Journal ArticleDOI
09 Jan 2004-Science
TL;DR: A phylogenetic analysis of 1125 global human mitochondrial DNA sequences permitted positioning of all nucleotide substitutions according to their order of occurrence, and particularly highly conserved amino acid substitutions were found at the roots of multiple mtDNA lineages from higher latitudes.
Abstract: A phylogenetic analysis of 1125 global human mitochondrial DNA (mtDNA) sequences permitted positioning of all nucleotide substitutions according to their order of occurrence. The relative frequency and amino acid conservation of internal branch replacement mutations was found to increase from tropical Africa to temperate Europe and arctic northeastern Siberia. Particularly highly conserved amino acid substitutions were found at the roots of multiple mtDNA lineages from higher latitudes. These same lineages correlate with increased propensity for energy deficiency diseases as well as longevity. Thus, specific mtDNA replacement mutations permitted our ancestors to adapt to more northern climates, and these same variants are influencing our health today.

773 citations


Network Information
Related Topics (5)
Exon
38.3K papers, 1.7M citations
79% related
Locus (genetics)
42.7K papers, 2M citations
79% related
Intron
23.8K papers, 1.3M citations
77% related
Mutation
45.2K papers, 2.6M citations
77% related
Gene
211.7K papers, 10.3M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202266
202147
202043
201946
201850