scispace - formally typeset
Search or ask a question
Topic

Human serum albumin

About: Human serum albumin is a research topic. Over the lifetime, 9402 publications have been published within this topic receiving 269029 citations. The topic is also known as: serum albumin & ALB.


Papers
More filters
Journal ArticleDOI
TL;DR: A method that combines specific isolation of nitrated proteins with mass spectrometric determination of the amino acid sequence and the site of nitration of individual proteins is described and its identity is confirmed by peptide mass fingerprinting and MASCOT.

100 citations

Journal ArticleDOI
TL;DR: Human hepatic uptake of 40 and 80 nm AuNP with branched polyethylenimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings as well as human plasma protein (HP) and human serum albumin (HSA) coronas was investigated to better understanding of the dramatic effect of protein coronas (PC) on AuNP cellular uptake, cytotoxicity and their underlying molecular mechanisms of action.
Abstract: Protein corona formation over gold nanoparticles (AuNP) can modulate cellular responses by altering AuNP physicochemical properties. The liver plays an essential role in metabolism, detoxification and elimination of xenobiotics and drugs as well as circulating NP clearance. We investigated human hepatic uptake of 40 and 80 nm AuNP with branched polyethylenimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings as well as human plasma protein (HP) and human serum albumin (HSA) coronas. AuNP-mediated cytotoxicity, reactive oxygen/reactive nitrogen species (ROS/RNS), and CYP activity in human hepatocytes as well as molecular mechanisms with 40 nm bare and HP BPEI–AuNP were investigated. Time-dependent increase in uptake occurred for all bare AuNP but HP and HSA decreased uptake except for 40 nm HP PEG–AuNP. BPEI–AuNP showed time-and concentration-dependent increase in ROS/RNS which correlated with cytotoxicity at 24 h. HP corona substantially reduced ROS/RNS. The 40 and 80 nm bare, HP o...

100 citations

Journal ArticleDOI
TL;DR: Long-lasting release of NO by S-NO-HSA provides significant protection of skeletal muscle from I/R injury and leads to protection from vasoconstriction and reduced edema formation after reperfusion.
Abstract: Background— Peroxynitrite generated from nitric oxide (NO) and superoxide (O2−) contributes to ischemia/reperfusion (I/R) injury. Feedback inhibition of endothelial NO synthase by NO may inhibit O2− production generated also by endothelial NO synthase at diminished local l-arginine concentrations accompanying I/R. Methods and Results— During hindlimb I/R (2.5 hours/2 hours), in vivo NO was monitored continuously (porphyrinic sensor), and high-energy phosphates, reduced and oxidized glutathione (chromatography), and I/R injury were measured intermittently. Rabbits receiving human serum albumin (HSA) (controls) were compared with those receiving S-nitroso human serum albumin (S-NO-HSA) beginning 30 minutes before reperfusion for 1 hour or 30 minutes before ischemia for 3.5 hours (0.1 μmol · kg−1 · h− 1). The onset of ischemia led to a rapid increase of NO from its basal level (50±12 nmol/L) to 120±20 and 220±15 nmol/L in the control and S-NO-HSA–treated groups, respectively. In control animals, NO dropped b...

100 citations

Journal ArticleDOI
TL;DR: A novel NMR approach based on the comparative analysis of Aβ in its inhibited and filtrated states is proposed, which reveals a mechanism for the oligomerization inhibitory function of HSA, according to which HSA targets preferentially the soluble oligomers of A β(12−28) rather than its monomeric state.
Abstract: Human serum albumin (HSA) inhibits the formation of amyloid beta-peptide (Abeta) fibrils in human plasma. However, currently it is not known how HSA affects the formation of the highly toxic soluble diffusible oligomers that occur in the initial stages of Abeta fibrillization. We have therefore investigated by solution NMR the interaction of HSA with the Abeta(12-28) peptide, which has been previously shown to provide a reliable and stable model for the early prefibrillar oligomers as well as to contain key determinants for the recognition by albumin. For this purpose we propose a novel NMR approach based on the comparative analysis of Abeta in its inhibited and filtrated states monitored through both saturation transfer difference and recently developed nonselective off-resonance relaxation experiments. This combined NMR strategy reveals a mechanism for the oligomerization inhibitory function of HSA, according to which HSA targets preferentially the soluble oligomers of Abeta(12-28) rather than its monomeric state. Specifically, HSA caps the exposed hydrophobic patches located at the growing and/or transiently exposed sites of the Abeta oligomers, thereby blocking the addition of further monomers and the growth of the prefibrillar assemblies. The proposed model has implications not only for the pharmacological treatment of Alzheimer's disease specifically but also for the inhibition of oligomerization in amyloid-related diseases in general. In addition, the proposed NMR approach is expected to be useful for the investigation of the mechanism of action of other oligomerization inhibitors as well as of other amyloidogenic systems.

100 citations


Network Information
Related Topics (5)
In vivo
61.3K papers, 1.9M citations
84% related
Amino acid
124.9K papers, 4M citations
83% related
Aqueous solution
189.5K papers, 3.4M citations
82% related
Glutathione
42.5K papers, 1.8M citations
82% related
Cell culture
133.3K papers, 5.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023174
2022423
2021284
2020333
2019333
2018337