scispace - formally typeset
Search or ask a question
Topic

Human visual system model

About: Human visual system model is a research topic. Over the lifetime, 8697 publications have been published within this topic receiving 259440 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results demonstrate that position invariance, a widely acknowledged property of the human visual system, is limited to specific experimental conditions.
Abstract: Visual object recognition is considered to be largely translation invariant. An earlier study (Foster & Kahn, 1985), however, has indicated that recognition of complex novel stimuli is partially specific to location in the visual field: It is significantly easier to determine the identity of two briefly displayed random patterns if both stimuli are presented at the same, rather than at different, locations. In a series ofsame/different discrimination tasks, we characterize the processes underlying this “displacement effect”: Horizontal and vertical translations are equally effective in reducing performance. Making the task more difficult by increasing pattern similarity leads to even higher positional specificity. The displacement effect disappears after rotation or contrast reversal of the patterns, indicating that positional specificity depends on relatively low levels of processing. Control experiments rule out explanations that are independent of visual pattern memory, such as spatial attention, eye movements, or retinal afterimages. Positional specificity of recognition is found only forsame trials. Our results demonstrate that position invariance, a widely acknowledged property of the human visual system, is limited to specific experimental conditions. Normalization models involving mental shifts of an early visual representation or of a window of attention cannot easily account for these findings.

67 citations

Proceedings ArticleDOI
01 Apr 1993
TL;DR: In this paper, the authors survey and give a classification of the criteria for the evaluation of monochrome image quality, including the mean square error (MSE) and mean square errors (SSE).
Abstract: Although a variety of techniques are available today for gray-scale image compression, a complete evaluation of these techniques cannot be made as there is no single reliable objective criterion for measuring the error in compressed images. The traditional subjective criteria are burdensome, and usually inaccurate or inconsistent. On the other hand, being the most common objective criterion, the mean square error (MSE) does not have a good correlation with the viewer's response. It is now understood that in order to have a reliable quality measure, a representative model of the complex human visual system is required. In this paper, we survey and give a classification of the criteria for the evaluation of monochrome image quality.

66 citations

Journal ArticleDOI
TL;DR: This work approximates the spatially variant properties of the human visual system with multiple low-cost off-the-shelf imaging sensors and maximizes the information throughput and bandwidth savings of the foveated system.
Abstract: Conventional imaging techniques adopt a rectilinear sampling approach, where a finite number of pixels are spread evenly across an entire field of view (FOV). Consequently, their imaging capabilities are limited by an inherent trade-off between the FOV and the resolving power. In contrast, a foveation technique allocates the limited resources (e.g., a finite number of pixels or transmission bandwidth) as a function of foveal eccentricities, which can significantly simplify the optical and electronic designs and reduce the data throughput, while the observer's ability to see fine details is maintained over the whole FOV. We explore an approach to a foveated imaging system design. Our approach approximates the spatially variant properties (i.e., resolution, contrast, and color sensitivities) of the human visual system with multiple low-cost off-the-shelf imaging sensors and maximizes the information throughput and bandwidth savings of the foveated system. We further validate our approach with the design of a compact dual-sensor foveated imaging system. A proof-of-concept bench prototype and experimental results are demonstrated.

66 citations

Proceedings ArticleDOI
23 Jun 2013
TL;DR: Results show that the proposed framework for boundary detection in complex natural scenes has excellent ability to flexibly capture both the structured chromatic and achromatic boundaries in complex scenes.
Abstract: Color information plays an important role in better understanding of natural scenes by at least facilitating discriminating boundaries of objects or areas. In this study, we propose a new framework for boundary detection in complex natural scenes based on the color-opponent mechanisms of the visual system. The red-green and blue-yellow color opponent channels in the human visual system are regarded as the building blocks for various color perception tasks such as boundary detection. The proposed framework is a feed forward hierarchical model, which has direct counterpart to the color-opponent mechanisms involved in from the retina to the primary visual cortex (V1). Results show that our simple framework has excellent ability to flexibly capture both the structured chromatic and achromatic boundaries in complex scenes.

66 citations

Patent
13 May 1974
TL;DR: In this article, a technique and apparatus for two dimensional pattern analysis utilizing a transform of the pattern enables the extraction of desired pattern information by means of spatial filtering in accordance with known human visual system processing.
Abstract: A technique and apparatus for two dimensional pattern analysis utilizing a transform of the pattern enables the extraction of desired pattern information by means of spatial filtering in accordance with known human visual system processing. Two dimensional spatial frequencies resulting from the transform are acted on by either anisotropic or uniquely used conventional filters to extract one, two and three dimensional pattern information from spatial frequency subsets to determine general form, edge, texture and depth information for detection, identification and classification of objects in simple or complex scenes.

66 citations


Network Information
Related Topics (5)
Feature (computer vision)
128.2K papers, 1.7M citations
89% related
Feature extraction
111.8K papers, 2.1M citations
86% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Image processing
229.9K papers, 3.5M citations
85% related
Convolutional neural network
74.7K papers, 2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202349
202294
2021279
2020311
2019351
2018348