scispace - formally typeset
Search or ask a question
Topic

Human visual system model

About: Human visual system model is a research topic. Over the lifetime, 8697 publications have been published within this topic receiving 259440 citations.


Papers
More filters
25 Oct 2011
TL;DR: The human visual system is the most complex pattern recognition device known as discussed by the authors, and the visual cortex arrives at a simple and unambiguous interpretation of data from the retinal image that is useful for the decisions and actions of everyday life.
Abstract: The human visual system is the most complex pattern recognition device known. In ways that are yet to be fully understood, the visual cortex arrives at a simple and unambiguous interpretation of data from the retinal image that is useful for the decisions and actions of everyday life. Recent advances in Bayesian models of computer vision and in the measurement and modeling of natural image statistics are providing the tools to test and constrain theories of human object perception. In turn, these theories are having an impact on the interpretation of cortical function.

247 citations

Proceedings ArticleDOI
19 Oct 2009
TL;DR: DVWs and DVPs are proposed as the visual correspondences to text words and phrases, where visual phrases refer to the frequently co-occurring visual word pairs, and are more comparable with the text words than the classic visual words.
Abstract: The Bag-of-visual Words (BoW) image representation has been applied for various problems in the fields of multimedia and computer vision. The basic idea is to represent images as visual documents composed of repeatable and distinctive visual elements, which are comparable to the words in texts. However, massive experiments show that the commonly used visual words are not as expressive as the text words, which is not desirable because it hinders their effectiveness in various applications. In this paper, Descriptive Visual Words (DVWs) and Descriptive Visual Phrases (DVPs) are proposed as the visual correspondences to text words and phrases, where visual phrases refer to the frequently co-occurring visual word pairs. Since images are the carriers of visual objects and scenes, novel descriptive visual element set can be composed by the visual words and their combinations which are effective in representing certain visual objects or scenes. Based on this idea, a general framework is proposed for generating DVWs and DVPs from classic visual words for various applications. In a large-scale image database containing 1506 object and scene categories, the visual words and visual word pairs descriptive to certain scenes or objects are identified as the DVWs and DVPs. Experiments show that the DVWs and DVPs are compact and descriptive, thus are more comparable with the text words than the classic visual words. We apply the identified DVWs and DVPs in several applications including image retrieval, image re-ranking, and object recognition. The DVW and DVP combination outperforms the classic visual words by 19.5% and 80% in image retrieval and object recognition tasks, respectively. The DVW and DVP based image re-ranking algorithm: DWPRank outperforms the state-of-the-art VisualRank by 12.4% in accuracy and about 11 times faster in efficiency.

245 citations

Journal ArticleDOI
TL;DR: This paper presents a novel method for underwater image enhancement inspired by the Retinex framework, which simulates the human visual system and utilizes the combination of the bilateral filter and trilateral filter on the three channels of the image in CIELAB color space according to the characteristics of each channel.

244 citations

Posted Content
TL;DR: A comprehensive review of attention mechanisms in computer vision can be found in this article, which categorizes them according to approach, such as channel attention, spatial attention, temporal attention and branch attention.
Abstract: Humans can naturally and effectively find salient regions in complex scenes. Motivated by this observation, attention mechanisms were introduced into computer vision with the aim of imitating this aspect of the human visual system. Such an attention mechanism can be regarded as a dynamic weight adjustment process based on features of the input image. Attention mechanisms have achieved great success in many visual tasks, including image classification, object detection, semantic segmentation, video understanding, image generation, 3D vision, multi-modal tasks and self-supervised learning. In this survey, we provide a comprehensive review of various attention mechanisms in computer vision and categorize them according to approach, such as channel attention, spatial attention, temporal attention and branch attention; a related repository this https URL is dedicated to collecting related work. We also suggest future directions for attention mechanism research.

243 citations

Journal ArticleDOI
TL;DR: A model that is capable of maintaining the identities of individuated elements as they move is described, and it solves a particular problem of underdetermination, the motion correspondence problem, by simultaneously applying 3 constraints: the nearest neighbor principle, the relative velocity principle, and the element integrity principle.
Abstract: A model that is capable of maintaining the identities of individuated elements as they move is described. It solves a particular problem of underdetermination, the motion correspondence problem, by simultaneously applying 3 constraints: the nearest neighbor principle, the relative velocity principle, and the element integrity principle. The model generates the same correspondence solutions as does the human visual system for a variety of displays, and many of its properties are consistent with what is known about the physiological mechanisms underlying human motion perception. The model can also be viewed as a proposal of how the identities of attentional tags are maintained by visual cognition, and thus it can be differentiated from a system that serves merely to detect movement.

242 citations


Network Information
Related Topics (5)
Feature (computer vision)
128.2K papers, 1.7M citations
89% related
Feature extraction
111.8K papers, 2.1M citations
86% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Image processing
229.9K papers, 3.5M citations
85% related
Convolutional neural network
74.7K papers, 2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202349
202294
2021279
2020311
2019351
2018348