scispace - formally typeset
Search or ask a question
Topic

Humanoid robot

About: Humanoid robot is a research topic. Over the lifetime, 14387 publications have been published within this topic receiving 243674 citations. The topic is also known as: 🤖.


Papers
More filters
Proceedings Article•DOI•
01 Jan 1999
TL;DR: A basic control method of whole body cooperative dynamic biped walking that uses trunk or trunk-waist cooperative motion to compensate for three-axis moment generated not only by the motion of the lower-limbs planned arbitrarily but by the time trajectory of the hands planned arbitrarily is proposed.
Abstract: The authors have focused on the bipedal humanoid robot expected to play an active role in human living space, through studies on an anthropomorphic biped walking robot. As the first stage of developing a bipedal humanoid robot, the authors developed the human-size 35 active DOF bipedal humanoid robot "WABIAN" and the human-size 41 active DOF bipedal humanoid robot "WABIAN-R". The authors also proposed a basic control method of whole body cooperative dynamic biped walking that uses trunk or trunk-waist cooperative motion to compensate for three-axis (pitch, roll and yaw-axis) moment generated not only by the motion of the lower-limbs planned arbitrarily but by the time trajectory of the hands planned arbitrarily. Using these systems and the control method, normal biped walking (forward and backward), dynamic dance, waving arms and hip, dynamic carrying of a load using its arms, and trunk-waist cooperative dynamic walking are achieved.

399 citations

Proceedings Article•DOI•
15 May 2006
TL;DR: A new humanoid robot-WABIAN-2- that can be used as a human motion simulator is proposed in this paper and its trunk is designed in order to permit rotation, and forward, backward, and sideway movement.
Abstract: A new humanoid robot-WABIAN-2- that can be used as a human motion simulator is proposed in this paper. Its trunk is designed in order to permit rotation, and forward, backward, and sideway movement. Further, its arms are designed to support its complete weight when pushing a walk-assist machine. Moreover, it can lean on a walk-assist machine by forearm control using trunk motion. Basic walking experiments with WABIAN-2 are conducted with and without a walk-assist machine, thereby confirming its effectiveness

396 citations

Proceedings Article•DOI•
01 Nov 2014
TL;DR: This paper treats the dynamics of the robot in centroidal form and directly optimizing the joint trajectories for the actuated degrees of freedom to arrive at a method that enjoys simpler dynamics, while still having the expressiveness required to handle kinematic constraints such as collision avoidance or reaching to a target.
Abstract: To plan dynamic, whole-body motions for robots, one conventionally faces the choice between a complex, full-body dynamic model containing every link and actuator of the robot, or a highly simplified model of the robot as a point mass. In this paper we explore a powerful middle ground between these extremes. We exploit the fact that while the full dynamics of humanoid robots are complicated, their centroidal dynamics (the evolution of the angular momentum and the center of mass (COM) position) are much simpler. By treating the dynamics of the robot in centroidal form and directly optimizing the joint trajectories for the actuated degrees of freedom, we arrive at a method that enjoys simpler dynamics, while still having the expressiveness required to handle kinematic constraints such as collision avoidance or reaching to a target. We further require that the robot's COM and angular momentum as computed from the joint trajectories match those given by the centroidal dynamics. This ensures that the dynamics considered by our optimization are equivalent to the full dynamics of the robot, provided that the robot's actuators can supply sufficient torque. We demonstrate that this algorithm is capable of generating highly-dynamic motion plans with examples of a humanoid robot negotiating obstacle course elements and gait optimization for a quadrupedal robot. Additionally, we show that we can plan without pre-specifying the contact sequence by exploiting the complementarity conditions between contact forces and contact distance.

396 citations

Journal Article•DOI•
TL;DR: It is shown that by leveraging advances in robotics, an interface based on EEG can be used to command a partially autonomous humanoid robot to perform complex tasks such as walking to specific locations and picking up desired objects.
Abstract: We describe a brain-computer interface for controlling a humanoid robot directly using brain signals obtained non-invasively from the scalp through electroencephalography (EEG). EEG has previously been used for tasks such as controlling a cursor and spelling a word, but it has been regarded as an unlikely candidate for more complex forms of control owing to its low signal-to-noise ratio. Here we show that by leveraging advances in robotics, an interface based on EEG can be used to command a partially autonomous humanoid robot to perform complex tasks such as walking to specific locations and picking up desired objects. Visual feedback from the robot's cameras allows the user to select arbitrary objects in the environment for pick-up and transport to chosen locations. Results from a study involving nine users indicate that a command for the robot can be selected from four possible choices in 5 s with 95% accuracy. Our results demonstrate that an EEG-based brain-computer interface can be used for sophisticated robotic interaction with the environment, involving not only navigation as in previous applications but also manipulation and transport of objects.

388 citations

Journal Article•DOI•
TL;DR: This work presents a general model for learning object affordances using Bayesian networks integrated within a general developmental architecture for social robots and demonstrates successful learning in the real world by having an humanoid robot interacting with objects.
Abstract: Affordances encode relationships between actions, objects, and effects. They play an important role on basic cognitive capabilities such as prediction and planning. We address the problem of learning affordances through the interaction of a robot with the environment, a key step to understand the world properties and develop social skills. We present a general model for learning object affordances using Bayesian networks integrated within a general developmental architecture for social robots. Since learning is based on a probabilistic model, the approach is able to deal with uncertainty, redundancy, and irrelevant information. We demonstrate successful learning in the real world by having an humanoid robot interacting with objects. We illustrate the benefits of the acquired knowledge in imitation games.

385 citations


Network Information
Related Topics (5)
Mobile robot
66.7K papers, 1.1M citations
96% related
Robot
103.8K papers, 1.3M citations
95% related
Adaptive control
60.1K papers, 1.2M citations
84% related
Control theory
299.6K papers, 3.1M citations
83% related
Object detection
46.1K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023253
2022759
2021573
2020647
2019801
2018921