scispace - formally typeset
Search or ask a question
Topic

Humanoid robot

About: Humanoid robot is a research topic. Over the lifetime, 14387 publications have been published within this topic receiving 243674 citations. The topic is also known as: 🤖.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents the theories of Leslie (1994) and Baron-Cohen (1995) on the development of theory of mind in human children and discusses the potential application of both of these theories to building robots with similar capabilities.
Abstract: If we are to build human-like robots that can interact naturally with people, our robots must know not only about the properties of objects but also the properties of animate agents in the world. One of the fundamental social skills for humans is the attribution of beliefs, goals, and desires to other people. This set of skills has often been called a “theory of mind.” This paper presents the theories of Leslie (1994) and Baron-Cohen (1995) on the development of theory of mind in human children and discusses the potential application of both of these theories to building robots with similar capabilities. Initial implementation details and basic skills (such as finding faces and eyes and distinguishing animate from inanimate stimuli) are introduced. I further speculate on the usefulness of a robotic implementation in evaluating and comparing these two models.

373 citations

Proceedings ArticleDOI
14 Jun 2009
TL;DR: This work considers a probabilistic model for which the maximum likelihood (ML) trajectory coincides with the optimal trajectory and which reproduces the classical SOC solution and utilizes approximate inference methods that efficiently generalize to non-LQG systems.
Abstract: The general stochastic optimal control (SOC) problem in robotics scenarios is often too complex to be solved exactly and in near real time. A classical approximate solution is to first compute an optimal (deterministic) trajectory and then solve a local linear-quadratic-gaussian (LQG) perturbation model to handle the system stochasticity. We present a new algorithm for this approach which improves upon previous algorithms like iLQG. We consider a probabilistic model for which the maximum likelihood (ML) trajectory coincides with the optimal trajectory and which, in the LQG case, reproduces the classical SOC solution. The algorithm then utilizes approximate inference methods (similar to expectation propagation) that efficiently generalize to non-LQG systems. We demonstrate the algorithm on a simulated 39-DoF humanoid robot.

367 citations

Proceedings Article
01 Sep 2003
TL;DR: This paper discusses different approaches of reinforcement learning in terms of their applicability in humanoid robotics, and demonstrates that ‘vanilla’ policy gradient methods can be significantly improved using the natural policy gradient instead of the regular policy gradient.
Abstract: Reinforcement learning offers one of the most general framework to take traditional robotics towards true autonomy and versatility. However, applying reinforcement learning to high dimensional movement systems like humanoid robots remains an unsolved problem. In this paper, we discuss different approaches of reinforcement learning in terms of their applicability in humanoid robotics. Methods can be coarsely classified into three different categories, i.e., greedy methods, ‘vanilla’ policy gradient methods, and natural gradient methods. We discuss that greedy methods are not likely to scale into the domain humanoid robotics as they are problematic when used with function approximation. ‘Vanilla’ policy gradient methods on the other hand have been successfully applied on real-world robots including at least one humanoid robot [3]. We demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. A derivation of the natural policy gradient is provided, proving that the average policy gradient of Kakade [10] is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges to the nearest local minimum of the cost function with respect to the Fisher information metric under suitable conditions. The algorithm outperforms non-natural policy gradients by far in a cart-pole balancing evaluation, and for learning nonlinear dynamic motor primitives for humanoid robot control. It offers a promising route for the development of reinforcement learning for truly high-dimensionally continuous state-action systems.

361 citations

Proceedings ArticleDOI
10 Mar 2007
TL;DR: It is shown that the essential characteristics of a gesture can be efficiently transferred by interacting socially with the robot by using active teaching methods that puts the human teacher “in the loop” of the robot's learning.
Abstract: We present an approach to teach incrementally human gestures to a humanoid robot. By using active teaching methods that puts the human teacher "in the loop" of the robot's learning, we show that the essential characteristics of a gesture can be efficiently transferred by interacting socially with the robot. In a first phase, the robot observes the user demonstrating the skill while wearing motion sensors. The motion of his/her two arms and head are recorded by the robot, projected in a latent space of motion and encoded bprobabilistically in a Gaussian Mixture Model (GMM). In a second phase, the user helps the robot refine its gesture by kinesthetic teaching, i.e. by grabbing and moving its arms throughout the movement to provide the appropriate scaffolds. To update the model of the gesture, we compare the performance of two incremental training procedures against a batch training procedure. We present experiments to show that different modalities can be combined efficiently to teach incrementally basketball officials' signals to a HOAP-3 humanoid robot.

360 citations

Proceedings ArticleDOI
29 Sep 2014
TL;DR: This paper demonstrates that simple heuristics used to enforce limits (clamping and penalizing) are not efficient in general, and proposes a generalization of DDP which accommodates box inequality constraints on the controls, without significantly sacrificing convergence quality or computational effort.
Abstract: Trajectory optimizers are a powerful class of methods for generating goal-directed robot motion. Differential Dynamic Programming (DDP) is an indirect method which optimizes only over the unconstrained control-space and is therefore fast enough to allow real-time control of a full humanoid robot on modern computers. Although indirect methods automatically take into account state constraints, control limits pose a difficulty. This is particularly problematic when an expensive robot is strong enough to break itself. In this paper, we demonstrate that simple heuristics used to enforce limits (clamping and penalizing) are not efficient in general. We then propose a generalization of DDP which accommodates box inequality constraints on the controls, without significantly sacrificing convergence quality or computational effort. We apply our algorithm to three simulated problems, including the 36-DoF HRP-2 robot. A movie of our results can be found here goo.gl/eeiMnn

349 citations


Network Information
Related Topics (5)
Mobile robot
66.7K papers, 1.1M citations
96% related
Robot
103.8K papers, 1.3M citations
95% related
Adaptive control
60.1K papers, 1.2M citations
84% related
Control theory
299.6K papers, 3.1M citations
83% related
Object detection
46.1K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023253
2022759
2021573
2020647
2019801
2018921