scispace - formally typeset
Search or ask a question
Topic

Humanoid robot

About: Humanoid robot is a research topic. Over the lifetime, 14387 publications have been published within this topic receiving 243674 citations. The topic is also known as: 🤖.


Papers
More filters
Journal Article•DOI•
TL;DR: The task-space multiobjective controllers that write as quadratic programs (QPs) to handle multirobot systems as a single centralized control are extended to assemble all the “robots” models and their interaction task constraints into a single QP formulation.
Abstract: We have extended the task-space multiobjective controllers that write as quadratic programs (QPs) to handle multirobot systems as a single centralized control. The idea is to assemble all the “robots” models and their interaction task constraints into a single QP formulation. By multirobot, we mean that whatever entities a given robot will interact with (solid or articulated systems, actuated, partially or not at all, fixed-base or floating-base), we model them as clusters of robots and the controller computes the state of each cluster as an overall system and their interaction forces in a physically consistent way. By doing this, the tasks specification simplifies substantially. At the heart of the interactions between the systems are the contact forces; methodologies are provided to achieve reliable force tracking by our multirobot QP controller. The approach is assessed by a large panel of experiments on real complex robotic platforms (full-size humanoid, dexterous robotic hand, fixed-base anthropomorphic arm) performing whole-body manipulations, dexterous manipulations, and robot–robot comanipulations of rigid floating objects and articulated mechanisms, such as doors, drawers, boxes, or even smaller mechanisms like a spring-loaded click pen.

73 citations

Proceedings Article•DOI•
24 Apr 2013
TL;DR: In this article, the authors present a complete, exact, analytical solution to both forward and inverse kinematics for the Aldebaran NAO humanoid robot and present a software library implementation for real-time onboard execution.
Abstract: The design of complex dynamic motions for humanoid robots is achievable only through the use of robot kinematics. In this paper, we study the problems of forward and inverse kinematics for the Aldebaran NAO humanoid robot and present a complete, exact, analytical solution to both problems, including a software library implementation for realtime onboard execution. The forward kinematics allow NAO developers to map any configuration of the robot from its own joint space to the three-dimensional physical space, whereas the inverse kinematics provide closed-form solutions to finding joint configurations that drive the end effectors of the robot to desired target positions in the three-dimensional physical space. The proposed solution was made feasible through a decomposition into five independent problems (head, two arms, two legs), the use of the Denavit-Hartenberg method, and the analytical solution of a non-linear system of equations. The main advantage of the proposed inverse kinematics solution compared to existing approaches is its accuracy, its efficiency, and the elimination of singularities. In addition, we suggest a generic guideline for solving the inverse kinematics problem for other humanoid robots. The implemented, freely-available, NAO kinematics library, which additionally offers center-of-mass calculations, is demonstrated in two motion design tasks: basic center-of-mass balancing and pointing to the ball.

73 citations

Journal Article•DOI•
TL;DR: An approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network is proposed and the experimental results of drumming by a humanoid robot are shown.
Abstract: Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

73 citations

Journal Article•DOI•
09 Jan 2020-BMJ Open
TL;DR: The available evidence related to implementation factors of socially assistive humanoid robots for older adults is limited, mainly focusing on aspects at individual level, and exploring acceptance of this technology.
Abstract: Objectives Socially assistive humanoid robots are considered a promising technology to tackle the challenges in health and social care posed by the growth of the ageing population. The purpose of our study was to explore the current evidence on barriers and enablers for the implementation of humanoid robots in health and social care. Design Systematic review of studies entailing hands-on interactions with a humanoid robot. Setting From April 2018 to June 2018, databases were searched using a combination of the same search terms for articles published during the last decade. Data collection was conducted by using the Rayyan software, a standardised predefined grid, and a risk of bias and a quality assessment tool. Participants Post-experimental data were collected and analysed for a total of 420 participants. Participants comprised: older adults (n=307) aged ≥60 years, with no or some degree of age-related cognitive impairment, residing either in residential care facilities or at their home; care home staff (n=106); and informal caregivers (n=7). Primary outcomes Identification of enablers and barriers to the implementation of socially assistive humanoid robots in health and social care, and consequent insights and impact. Future developments to inform further research. Results Twelve studies met the eligibility criteria and were included. None of the selected studies had an experimental design; hence overall quality was low, with high risks of biases. Several studies had no comparator, no baseline, small samples, and self-reported measures only. Within this limited evidence base, the enablers found were enjoyment, usability, personalisation and familiarisation. Barriers were related to technical problems, to the robots’ limited capabilities and the negative preconceptions towards the use of robots in healthcare. Factors which produced mixed results were the robot’s human-like attributes, previous experience with technology and views of formal and informal carers. Conclusions The available evidence related to implementation factors of socially assistive humanoid robots for older adults is limited, mainly focusing on aspects at individual level, and exploring acceptance of this technology. Investigation of elements linked to the environment, organisation, societal and cultural milieu, policy and legal framework is necessary. PROSPERO registration number CRD42018092866.

73 citations

Proceedings Article•DOI•
01 Mar 2017
TL;DR: A new swing speed up algorithm is presented, allowing the robot to set the foot down more quickly to recover from errors in the direction of the current capture point dynamics, and a new algorithm to adjust the desired footstep is presented.
Abstract: While humans are highly capable of recovering from external disturbances and uncertainties that result in large tracking errors, humanoid robots have yet to reliably mimic this level of robustness. Essential to this is the ability to combine traditional “ankle strategy” balancing with step timing and location adjustment techniques. In doing so, the robot is able to step quickly to the necessary location to continue walking. In this work, we present both a new swing speed up algorithm to adjust the step timing, allowing the robot to set the foot down more quickly to recover from errors in the direction of the current capture point dynamics, and a new algorithm to adjust the desired footstep, expanding the base of support to utilize the center of pressure (CoP)-based ankle strategy for balance. We then utilize the desired centroidal moment pivot (CMP) to calculate the momentum rate of change for our inverse-dynamics based whole-body controller. We present simulation and experimental results using this work, and discuss performance limitations and potential improvements.

73 citations


Network Information
Related Topics (5)
Mobile robot
66.7K papers, 1.1M citations
96% related
Robot
103.8K papers, 1.3M citations
95% related
Adaptive control
60.1K papers, 1.2M citations
84% related
Control theory
299.6K papers, 3.1M citations
83% related
Object detection
46.1K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023253
2022759
2021573
2020647
2019801
2018921