scispace - formally typeset
Search or ask a question
Topic

Humanoid robot

About: Humanoid robot is a research topic. Over the lifetime, 14387 publications have been published within this topic receiving 243674 citations. The topic is also known as: 🤖.


Papers
More filters
Proceedings ArticleDOI
31 Oct 2000
TL;DR: The H6 is expected to be a common test-bed for experiment and discussion for various aspects of intelligent humanoid robotics.
Abstract: A humanoid robot "H6" is developed as a platform for the research on perception-action coupling in intelligent behaviour of humanoid type robots. The H6 has the features as follows: 1) a body which has enough DOFs and each joint has enough torque for full body motion, 2) a PC/AT compatible on-board computer which is controlled by RT-linux so that low-level to high-level control is achieved simultaneously, 3) is self-contained and connected to a network via radio ethernet, 4) a 3D vision function can be applied. The H6 is expected to be a common test-bed for experiment and discussion for various aspects of intelligent humanoid robotics.

207 citations

Proceedings ArticleDOI
29 Oct 2001
TL;DR: This work presents an algorithm for planning safe navigation strategies for biped robots moving in obstacle-cluttered environments that takes into account the unique ability of legged robots such as bipedal humanoids to traverse obstacles by stepping over them.
Abstract: We present an algorithm for planning safe navigation strategies for biped robots moving in obstacle-cluttered environments. From a discrete set of plausible statically-stable, single-step motions, a forward dynamic programming approach is used to compute a sequence of feasible footstep locations. In contrast to existing navigation strategies for mobile robots, our method is a global method that takes into account the unique ability of legged robots such as bipedal humanoids to traverse obstacles by stepping over them. Heuristics designed to minimize the number and complexity of the step motions are used to encode cost functions used for searching a footstep transition graph. We show preliminary results of an experimental implementation of the algorithm using a model of the H6 humanoid navigating on an office floor littered with obstacles.

206 citations

Proceedings ArticleDOI
16 May 2016
TL;DR: This paper presents a methodology that allows for the fast and reliable generation of efficient multi-contact robotic walking gaits through the framework of HZD, even in the presence of underactuation, and experimentally validated the methodology on the spring-legged prototype humanoid, DURUS, showing that the optimization approach yields dynamic and stable 3D walking Gaits.
Abstract: Hybrid zero dynamics (HZD) has emerged as a popular framework for dynamic and underactuated bipedal walking, but has significant implementation difficulties when applied to the high degrees of freedom present in humanoid robots. The primary impediment is the process of gait design-it is difficult for optimizers to converge on a viable set of virtual constraints defining a gait. This paper presents a methodology that allows for the fast and reliable generation of efficient multi-contact robotic walking gaits through the framework of HZD, even in the presence of underactuation. To achieve this goal, we unify methods from trajectory optimization with the control framework of multi-domain hybrid zero dynamics. By formulating a novel optimization problem in the context of direct collocation and generating analytic Jacobians for the constraints, solving the resulting nonlinear program becomes tractable for large-scale nonlinear programming solvers, even for systems as high-dimensional as humanoid robots. We experimentally validated our methodology on the spring-legged prototype humanoid, DURUS, showing that the optimization approach yields dynamic and stable 3D walking gaits.

205 citations

Proceedings ArticleDOI
06 Jul 2004
TL;DR: Methods for path planning and obstacle avoidance for the humanoid robot QRIO, allowing the robot to autonomously walk around in a home environment are presented, based on plane extraction from data captured by a stereo-vision system that has been developed specifically forQRIO.
Abstract: This work presents methods for path planning and obstacle avoidance for the humanoid robot QRIO, allowing the robot to autonomously walk around in a home environment. For an autonomous robot, obstacle detection and localization as well as representing them in a map are crucial tasks for the success of the robot. Our approach is based on plane extraction from data captured by a stereo-vision system that has been developed specifically for QRIO. We briefly overview the general software architecture composed of perception, short and long term memory, behavior control, and motion control, and emphasize on our methods for obstacle detection by plane extraction, occupancy grid mapping, and path planning. Experimental results complete the description of our system.

204 citations

Journal ArticleDOI
TL;DR: The actuator-level control of Valkyrie, a new humanoid robot designed by NASA's Johnson Space Center in collaboration with several external partners, is discussed and a decentralized approach is taken in controlling Valkyrie's many series elastic degrees of freedom.
Abstract: This paper discusses the actuator-level control of Valkyrie, a new humanoid robot designed by NASA's Johnson Space Center in collaboration with several external partners. Several topics pertaining to Valkyrie's series elastic actuators are presented including control architecture, controller design, and implementation in hardware. A decentralized approach is taken in controlling Valkyrie's many series elastic degrees of freedom. By conceptually decoupling actuator dynamics from robot limb dynamics, the problem of controlling a highly complex system is simplified and the controller development process is streamlined compared to other approaches. This hierarchical control abstraction is realized by leveraging disturbance observers in the robot's joint-level torque controllers. A novel analysis technique is applied to understand the ability of a disturbance observer to attenuate the effects of unmodeled dynamics. The performance of this control approach is demonstrated in two ways. First, torque tracking performance of a single Valkyrie actuator is characterized in terms of controllable torque resolution, tracking error, bandwidth, and power consumption. Second, tests are performed on Valkyrie's arm, a serial chain of actuators, to demonstrate the robot's ability to accurately track torques with the presented decentralized control approach.

204 citations


Network Information
Related Topics (5)
Mobile robot
66.7K papers, 1.1M citations
96% related
Robot
103.8K papers, 1.3M citations
95% related
Adaptive control
60.1K papers, 1.2M citations
84% related
Control theory
299.6K papers, 3.1M citations
83% related
Object detection
46.1K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023253
2022759
2021573
2020647
2019801
2018921