scispace - formally typeset
Search or ask a question
Topic

Humanoid robot

About: Humanoid robot is a research topic. Over the lifetime, 14387 publications have been published within this topic receiving 243674 citations. The topic is also known as: 🤖.


Papers
More filters
Journal Article•DOI•
TL;DR: A probabilistic method is used, based on Hidden Markov Models, for extracting the relative importance of reproducing either the gesture or the specific hand path in a given task, to determine a metric of imitation performance.

201 citations

Proceedings Article•DOI•
01 Dec 2006
TL;DR: The effectiveness of the pattern generation and mechanism of WABIAN-2R, which have the ability to realize more human-like walking styles in a humanoid robot, are confirmed.
Abstract: A humanoid robot, WABIAN-2R, capable of human-like walk with stretched knees and heel-contact and toe-off motions is proposed in this paper. WABIAN-2R has two 1-DOF passive joints in its feet to enable it to bend its toes in steady walking. Further, it has two 6-DOF legs, a 2-DOF pelvis, a 2-DOF trunk, two 7-DOF arms with 3-DOF hands, and a 3-DOF neck. In addition, a new algorithm for generating walking patterns with stretched knees and heel-contact and toe-off motions based on the ZMP criterion is described. In this pattern generation, some parameters of the foot trajectories of a biped robot are optimized by using a genetic algorithm in order to generate a continuous and smooth leg motion. Software simulations and walking experiments are conducted, and the effectiveness of the pattern generation and mechanism of WABIAN-2R, which have the ability to realize more human-like walking styles in a humanoid robot, are confirmed.

199 citations

Journal Article•DOI•
TL;DR: The inverse dynamics of the musculoskeletal human model is formulated as an optimization problem subject to equality and inequality conditions, and it is shown that linear programming has better performance.
Abstract: We discuss the computation of somatosensory information from motion-capture data. The efficient computational algorithms previously developed by the authors for multibody systems, such as humanoid robots, are applied to a musculoskeletal model of the human body. The somatosensory information includes tension, length, and velocity of the muscles, tension of the tendons and ligaments, pressure of the cartilages, and stress of the bones. The inverse dynamics of the musculoskeletal human model is formulated as an optimization problem subject to equality and inequality conditions. We analyzed the solutions obtained by linear and quadratic programming methods, and showed that linear programming has better performance. The technological development aims to define a higher dimensional man-machine interface and to open the door to the cognitive-level communication of humans and machines.

197 citations

Journal Article•DOI•
TL;DR: The Robota project constructs a series of multiple-degrees-of-freedom, doll-shaped humanoid robots, whose physical features resemble those of a human baby as discussed by the authors, which are applied as assistive technologies in behavioral studies with low-functioning children with autism.
Abstract: The Robota project constructs a series of multiple-degrees-of-freedom, doll-shaped humanoid robots, whose physical features resemble those of a human baby. The Robota robots have been applied as assistive technologies in behavioral studies with low-functioning children with autism. These studies investigate the potential of using an imitator robot to assess children's imitation ability and to teach children simple coordinated behaviors. In this article, the authors review the recent technological developments that have made the Robota robots suitable for use with children with autism. They critically appraise the main outcomes of two sets of behavioral studies conducted with Robota and discuss how these results inform future development of the Robota robots and robots in general for the rehabilitation of children with complex developmental disabilities.

196 citations

Journal Article•DOI•
TL;DR: A humanoid robot and ubiquitous sensors in an autonomous system to assist visitors at an Osaka Science Museum exhibit and shows how simple recognition functions such as identifying an individual are difficult.
Abstract: One objective of the Intelligent Robotics and Communication Laboratories is to develop an intelligent communication robot that supports people in an open everyday environment by interacting with them. A humanoid robot can help achieve this objective because its physical structure lets it interact through human-like body movements such as shaking hands, greeting, and pointing. Both adults and children are more likely to understand such interactions than interactions with an electronic interface such as a touch panel or buttons. To behave intelligently during an interaction, a robot requires many types of information about its environment and the people with whom it interacts. However, in open everyday environments, simple recognition functions such as identifying an individual are difficult because the presence and movement of a large number of people as well as unfavorable illumination and background conditions affect the robot's sensing ability. We integrated humanoid robots and ubiquitous sensors in an autonomous system to assist visitors at an Osaka Science Museum exhibit

196 citations


Network Information
Related Topics (5)
Mobile robot
66.7K papers, 1.1M citations
96% related
Robot
103.8K papers, 1.3M citations
95% related
Adaptive control
60.1K papers, 1.2M citations
84% related
Control theory
299.6K papers, 3.1M citations
83% related
Object detection
46.1K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023253
2022759
2021573
2020647
2019801
2018921