Topic
Hydrate
About: Hydrate is a research topic. Over the lifetime, 19016 publications have been published within this topic receiving 342851 citations.
Papers published on a yearly basis
Papers
More filters
Book•
01 Jan 1990TL;DR: In this paper, the authors compared the properties of hydrates and ice with those of natural gas and showed the effect of thermodynamic inhibitors on the formation of hydrate formation and dissolution process.
Abstract: PREFACE Overview and Historical Perspective Hydrates as a Laboratory Curiosity Hydrates in the Natural Gas Industry Hydrates as an Energy Resource Environmental Aspects of Hydrates Safety Aspects of Hydrates Relationship of This Chapter to Those That Follow Molecular Structures and Similarities to Ice Crystal Structures of Ice Ih and Natural Gas Hydrates Comparison of Properties of Hydrates and Ice The What and the How of Hydrate Structures Hydrate Formation and Dissociation Processes Hydrate Nucleation Hydrate Growth Hydrate Dissociation Estimation Techniques for Phase Equilibria of Natural Gas Hydrates Hydrate Phase Diagrams for Water + Hydrocarbon Systems Three-Phase (LW-H-V) Equilibrium Calculations Quadruple Points and Equilibrium of Three Condensed Phases (LW-H-LHC) Effect of Thermodynamic Inhibitors on Hydrate Formation Two-Phase Equilibrium: Hydrates with One Other Phase Hydrate Enthalpy and Hydration Number from Phase Equilibrium Summary and Relationship to Chapters Which Follow A Statistical Thermodynamic Approach to Hydrate Phase Equilibria Statistical Thermodynamics of Hydrate Equilibria Application of the Method to Analyze Systems of Methane + Ethane + Propane Computer Simulation: Another Microscopic-Macroscopic Bridge Summary Experimental Methods and Measurements of Hydrate Properties Experimental Apparatuses and Methods for Macroscopic Measurements Measurements of the Hydrate Phase Data for Natural Gas Hydrate Phase Equilibria and Thermal Properties Summary and Relationship to Chapters that Follow References Hydrates in the Earth The Paradigm Is Changing from Assessment of Amount to Production of Gas Sediments with Hydrates Typically Have Low Contents of Biogenic Methane Sediment Lithology and Fluid Flow Are Major Controls on Hydrate Deposition Remote Methods Enable an Estimation of the Extent of a Hydrated Reservoir Drilling Logs and/or Coring Provide Improved Assessments of Hydrated Gas Amounts Hydrate Reservoir Models Indicate Key Variables for Methane Production Future Hydrated Gas Production Trends Are from the Permafrost to the Ocean Hydrates Play a Part in Climate Change and Geohazards Summary Hydrates in Production, Processing, and Transportation How Do Hydrate Plugs Form in Industrial Equipment? How Are Hydrate Plug Formations Prevented? How Is a Hydrate Plug Dissociated? Safety and Hydrate Plug Removal Applications to Gas Transport and Storage Summary of Hydrates in Flow Assurance and Transportation APPENDICES INDEX
6,037 citations
TL;DR: High-pressure Raman, infrared, x-ray, and neutron studies show that H2 and H2O mixtures crystallize into the sII clathrate structure with an approximate H2/H2Omolar ratio of 1:2.
Abstract: High-pressure Raman, infrared, x-ray, and neutron studies show that H2 and H2O mixtures crystallize into the sII clathrate structure with an approximate H2/H2O molar ratio of 1:2. The clathrate cages are multiply occupied, with a cluster of two H2 molecules in the small cage and four in the large cage. Substantial softening and splitting of hydrogen vibrons indicate increased intermolecular interactions. The quenched clathrate is stable up to 145 kelvin at ambient pressure. Retention of hydrogen at such high temperatures could help its condensation in planetary nebulae and may play a key role in the evolution of icy bodies.
790 citations
TL;DR: In this article, the compatibility relationship between C-A-S-H and N-Aluminum-modified calcium silicate hydrate (C-A,S,H) gels is assessed.
Abstract: Sodium aluminosilicate hydrate (N-A-S-H) gel, the main reaction product of the alkali-activated aluminosilicates, differs of the aluminium-modified calcium silicate hydrate (C-A-S-H) gel of PC pastes. Increasing the level of SCM to reduce PC content of binders are being considered to address reduction in CO2 emissions, activation of the additional SCM content by alkali activation represents a possible environmentally sustainable solution. Therefore, mixtures of C-A-S-H and N-A-S-H gels might be anticipated and the present study assesses the compatibility relationships between them.
Compositional diagrams are provided to indicate phase compositional ranges and the phase assemblages obtained under equilibrium conditions. In calcium-rich formulations (pH in excess of 12), C-A-S-H and C2ASH8 form as stable phases. However, in the lime poor part of the diagram an amorphous gel (N,C)-A-S-H precipitates but its stability is dependent on system pH and available Ca. (N,C)-A-S-H gels are de-stabilised by Ca to give C-A-S-H gels in suitable systems.
776 citations
TL;DR: In this article, the reaction of M(II) acetate hydrate (M = Co, Ni, and Zn) with 1,3,5-benzenetricarboxylic acid yields a material formulated as M3(BTC)2·12H2O.
Abstract: The reaction of M(II) acetate hydrate (M = Co, Ni, and Zn) with 1,3,5-benzenetricarboxylic (BTC) acid yields a material formulated as M3(BTC)2·12H2O. These compounds are isostructural as revealed by their XRPD patterns and a single crystal structure analysis performed on the cobalt containing solid [monoclinic, space group C2, a = 17.482 (6) A, b = 12.963 (5) A, c = 6.559 (2) A, β = 112.04°, V = 1377.8 (8) A, Z = 4]. This solid is composed of zigzag chains of tetra-aqua cobalt(II) benzenetricarboxylate that are hydrogen-bonded to yield a tightly held 3-D network. Upon liberating 11 water ligands per formula unit a porous solid results, M3(BTC)2·H2O, which was found to reversibly and repeatedly bind water without destruction of the framework. The proposed 1-D channels of the monohydrate have a pore diameter of 4 × 5 A, which is typical of those observed in zeolites and molecular sieves. The successful inclusion of ammonia into the porous solid was demonstrated. Larger molecules and others without a reactiv...
759 citations
TL;DR: In this article, the authors studied the kinetics of methane hydrate decomposition using a semibatch stirred-tank reactor and showed that the decomposition rate was proportional to the particle surface area and to the difference in the fugacity of methane at the equilibrium pressure and the degradation pressure.
Abstract: The kinetics of methane hydrate decomposition was studied using a semibatch stirred-tank reactor. The decomposition was accomplished by reducing the pressure on a hydrate slurry in water to a value below the three-phase equilibrium pressure at the reactor temperature. The data were obtained at temperatures from 274 to 283 K and pressures from 0.17 to 6.97 MPa. The stirring rates were high enough to eliminate mass-transfer effects. Analysis of the data indicated that the decomposition rate was proportional to the particle surface area and to the difference in the fugacity of methane at the equilibrium pressure and the decomposition pressure. The proportionality constant showed an Arrhenius temperature dependence. An estimate of the hydrate particle diameters in the experiments permitted the development of an intrinsic model for the kinetics of hydrate decomposition.
747 citations