scispace - formally typeset
Search or ask a question
Topic

Hydraulic retention time

About: Hydraulic retention time is a research topic. Over the lifetime, 6406 publications have been published within this topic receiving 151005 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the influence of temperature, flow rate and input concentrations on the treatment efficiency of organic matter and nutrients in constructed wetlands (CWs) is discussed, and three integrated 10 PE systems with horizontal subsurface flow (HSF) treating domestic wastewater are described.

121 citations

Journal ArticleDOI
TL;DR: Molecular analysis implied that nitrate and nitrite were denitrified into nitrogen by the same microorganisms as well as influent concentration, HRT and temperature are important factors affecting the denitrification efficiency.
Abstract: Sulfur-limestone was used in the autotrophic denitrification process to remove the nitrate and nitrite in a lab scale upflow biofilter. Synthetic water with four levels of nitrate and nitrite concentrations of 10, 40, 70 and 100 mg N/L was tested. When treating the low concentration of nitrate- or nitrite-contaminated water (10, 40 mg N/L), a high removal rate of about 90% was achieved at the hydraulic retention time (HRT) of 3 hr and temperature of 20–25°C. At the same HRT, 50% of the nitrate or nitrite could be removed even at the low temperature of 5–10°C. For the higher concentration nitrate and nitrite (70, 100 mg N/L), longer HRT was required. The batch test indicated that influent concentration, HRT and temperature are important factors affecting the denitrification efficiency. Molecular analysis implied that nitrate and nitrite were denitrified into nitrogen by the same microorganisms. The sequential two-step-reactions from nitrate to nitrite and from nitrite to the next-step product might have taken place in the same cell during the autotrophic denitrification process.

121 citations

Journal ArticleDOI
TL;DR: The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures.
Abstract: This study investigated the process of high-rate, high-temperature methanogenesis to enable very-high-volume loading during anaerobic digestion of waste-activated sludge. Reducing the hydraulic retention time (HRT) from 15 to 20 days in mesophilic digestion down to 3 days was achievable at a thermophilic temperature (55°C) with stable digester performance and methanogenic activity. A volatile solids (VS) destruction efficiency of 33 to 35% was achieved on waste-activated sludge, comparable to that obtained via mesophilic processes with low organic acid levels (<200 mg/liter chemical oxygen demand [COD]). Methane yield (VS basis) was 150 to 180 liters of CH4/kg of VSadded. According to 16S rRNA pyrotag sequencing and fluorescence in situ hybridization (FISH), the methanogenic community was dominated by members of the Methanosarcinaceae, which have a high level of metabolic capability, including acetoclastic and hydrogenotrophic methanogenesis. Loss of function at an HRT of 2 days was accompanied by a loss of the methanogens, according to pyrotag sequencing. The two acetate conversion pathways, namely, acetoclastic methanogenesis and syntrophic acetate oxidation, were quantified by stable carbon isotope ratio mass spectrometry. The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures. The proportion of methane due to acetate cleavage increased later in the batch, and it is likely that stable oxidation in the continuous reactor was maintained by application of the consistently low retention time.

121 citations

Journal ArticleDOI
TL;DR: The model suggests that a significant increase in the sulfate reduction capacity of the system is possible by increasing the volume of the bed relative to the total liquid volume of this reactors, and thus could be used in the design/scale-up of such reactors.
Abstract: A liquid-solid fluidized bed reactor was used to carry out sulfate reduction with a mixed culture of sulfate reducing bacteria. The bacteria were immobilized on porous glass beads. Stable fluidized bed operation with these biofilm-coated beads was possible. The low specific gravity of the hydrated beads allowed operation at low liquid recirculation rates. H 2 S level in the reactor was controlled by N 2 sparging, which also served as the location for liquid feed and removal. Ethanol was used as the electron donor/carbon source for the bacteria. Sulfate reduction rates up to 6.33 g sulfate L -1 day -1 were attained in the reactor at a hydraulic retention time of 5.1 h. The effect of hydraulic retention time and biomass loading on the beads, on reactor performance, and efficiency were examined. The efficiency of sulfate reduction increases considerably as the hydraulic retention increases, until the bacteria became very strongly substrate-limited at 55h HRT. The effect of bead biomass loading on bed expansion at various liquid superficial velocities was studied. A model for the reactor was developed. Simulations of the continuous flow experiments indicate that the model can describe the system well, and thus could be used in the design/scale-up of such reactors. The model suggests that a significant increase in the sulfate reduction capacity of the system is possible by increasing the volume of the bed relative to the total liquid volume of the system.

120 citations

Journal ArticleDOI
TL;DR: In this paper, an integrated bio-electrochemical reactor system is described focusing on new configurations, and the impact of important variables, namely, hydraulic retention time, electric current, pH, and carbon source.

120 citations


Network Information
Related Topics (5)
Wastewater
92.5K papers, 1.2M citations
92% related
Freundlich equation
27.6K papers, 941.4K citations
86% related
Activated carbon
39.6K papers, 920K citations
85% related
Water quality
67.1K papers, 945.1K citations
82% related
Biomass
57.2K papers, 1.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023171
2022431
2021357
2020341
2019357
2018355