scispace - formally typeset
Search or ask a question
Topic

Hydroforming

About: Hydroforming is a research topic. Over the lifetime, 2796 publications have been published within this topic receiving 26293 citations. The topic is also known as: Bulge forming.


Papers
More filters
Patent
31 Aug 1995
TL;DR: In this paper, a double wall tubular stock was designed to fit into an air gap tubular element comprising providing a workpiece having at least an inner wall liner and an outer wall jacket having adjacent open axial ends, causing at least one of the jacket ends to extend axially beyond the adjacent liner end and to be flared outwardly.
Abstract: Hydroforming double wall tubular stock into an air gap tubular element comprising providing a plural wall tubular workpiece having at least an inner wall liner and an outer wall jacket having adjacent open axial ends, causing at least one of the jacket ends to extend axially beyond the adjacent liner end and to be flared outwardly, placing the workpiece into a first mold cavity of a size and configuration to result in the desired size and configuration of the liner, sealing the open ends of said liner, injecting hydroforming fluid into said liner to fill it and applying pressure thereto to expand the liner and jacket in the first mold cavity, releasing the pressure, placing the workpiece in a second mold cavity of a size and configuration desired for the jacket on a resulting air gap tubular element, providing hydroforming end closures to seal off the jacket ends, at least one of the end closures having an annular shoulder aligned with the flared extended jacket end radially outwardly offset from the adjacent liner end, pressing the annular shoulder directly against the flared jacket end to seal the flared jacket end between the shoulder and an anvil surface, injecting fluid into the workpiece to fill it and applying pressure to expand only the jacket.

20 citations

Journal ArticleDOI
30 Jan 2015-JOM
TL;DR: In this article, an experimental study of the thermomechanical treatment by using the sheet hydroforming process was developed to improve both mechanical strength and formability for aluminum alloys in forming complex parts.
Abstract: Normally, the strength and formability of aluminum alloys can be increased largely by severe plastic deformation and heat treatment. However, many plastic deformation processes are more suitable for making raw material, not for formed parts. In this article, an experimental study of the thermomechanical treatment by using the sheet hydroforming process was developed to improve both mechanical strength and formability for aluminum alloys in forming complex parts. The limiting drawing ratio, thickness, and strain distribution of complex parts formed by sheet hydroforming were investigated to study the formability and sheet-deformation behavior. Based on the optimal formed parts, the tensile strength, microhardness, grain structure, and strengthening precipitates were analyzed to identify the strengthening effect of thermomechanical treatment. The results show that in the solution state, the limiting drawing ratio of cylindrical parts could be increased for 10.9% compared with traditional deep drawing process. The peak values of tensile stress and microhardness of formed parts are 18.0% and 12.5% higher than that in T6 state. This investigation shows that the thermomechanical treatment by sheet hydroforming is a potential method for the products manufacturing of aluminum alloy with high strength and good formability.

20 citations

Patent
06 May 1994
TL;DR: A platen for applying pressure during hydroforming of polycarbonate and similar sheet material includes a flexible diaphragm, which is used to apply pressure in response to hydraulic fluid under pressure within a platen cavity.
Abstract: A platen for applying pressure during hydroforming of polycarbonate and similar sheet material includes a flexible diaphragm for applying pressure in response to hydraulic fluid under pressure within a platen cavity and a diaphragm circumscribing sealing member for inhibiting seepage of hydraulic fluid and for preventing outward migration of the material of the diaphragm during a hydroforming operation. The junction between the sealing member and the diaphragm is conforming and void free to prevent hydraulic fluid flow therebetween. To help contain the hydraulic fluid within the platen cavity, a circumscribing inwardly extending foot of the diaphragm provides a mechanical and dynamic seal against an adjacent surface of the platen cavity.

20 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical analysis model for tube hydro-bulging tests is developed, and then the stress paths and strain paths during bulging with fixed-ends and free-ends are analyzed through the theoretical model and finite element simulations.

20 citations

Journal ArticleDOI
TL;DR: In this paper, the linear stability analysis has been extended to 3D stress states in order to detect these defects during hydroforming processes, and the influence of material and process parameters on the bursting predictions are studied to show the ability of the approach to take into account these parameters directly from numerical results.

20 citations


Network Information
Related Topics (5)
Machining
121.3K papers, 1M citations
85% related
Welding
206.5K papers, 1.1M citations
81% related
Deformation (engineering)
41.5K papers, 899.7K citations
80% related
Alloy
171.8K papers, 1.7M citations
80% related
Microstructure
148.6K papers, 2.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202298
202158
202087
201981
201895