scispace - formally typeset
Search or ask a question
Topic

Hydrogen atom abstraction

About: Hydrogen atom abstraction is a research topic. Over the lifetime, 7059 publications have been published within this topic receiving 151781 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the reactions of α-tocopherol with various radicals and ketone triplets in solution were studied using laser flash photolysis and competitive techniques, and the results showed that the deuterium lunetic isotope effects are frequently very small, reflecting the expected lack of selectivity of fast reactions.
Abstract: Laser flash photolysis and competitive techniques have been employed to study the reactions of α-tocopherol with various radicals and ketone triplets in solution. For example benzophenone triplets abstract hydrogen with rate constants of 5.1×10 9 and 3.7×10 9 M -1 s -1 in benzene and benzene/1.3 M methanol. Similar near-diffusion-controlled values were obtained for several other ketone triplets, as well as tert-butoxyl and 4-methoxybenzoyloxyl radicals. Deuterium lunetic isotope effects are frequently very small, reflecting the expected lack of selectivity of fast reactions

68 citations

Journal ArticleDOI
TL;DR: The calculations give important new insights into distal hydrogen bonding, and show that in biomimetic, and, by extension, enzymatic systems, the hydrogen bond may be important for proton-relay mechanisms involved in the formation of the metal-oxo intermediates, but the enzyme pays the price for this by reduced hydrogen atom abstraction ability of the intermediate.
Abstract: Iron(IV)–oxo intermediates are involved in oxidations catalyzed by heme and nonheme iron enzymes, including the cytochromes P450. At the distal site of the heme in P450 Compound I (FeIV–oxo bound to porphyrin radical), the oxo group is involved in several hydrogen‐bonding interactions with the protein, but their role in catalysis is currently unknown. In this work, we investigate the effects of hydrogen bonding on the reactivity of high‐valent metal–oxo moiety in a nonheme iron biomimetic model complex with trigonal bipyramidal symmetry that has three hydrogen‐bond donors directed toward a metal(IV)–oxo group. We show these interactions lower the oxidative power of the oxidant in reactions with dehydroanthracene and cyclohexadiene dramatically as they decrease the strength of the OH bond (BDEOH) in the resulting metal(III)–hydroxo complex. Furthermore, the distal hydrogen‐bonding effects cause stereochemical repulsions with the approaching substrate and force a sideways attack rather than a more favorable attack from the top. The calculations, therefore, give important new insights into distal hydrogen bonding, and show that in biomimetic, and, by extension, enzymatic systems, the hydrogen bond may be important for proton‐relay mechanisms involved in the formation of the metal–oxo intermediates, but the enzyme pays the price for this by reduced hydrogen atom abstraction ability of the intermediate. Indeed, in nonheme iron enzymes, where no proton relay takes place, there generally is no donating hydrogen bond to the iron(IV)–oxo moiety.

68 citations

Journal ArticleDOI
TL;DR: A dual ammonia activation approach has been discovered whereby reversible M-L cooperativity and coordination induced bond weakening likely contribute to dihydrogen formation and enabled hydrogen atom abstraction and synthesis of a terminal nitride from coordinated ammonia, a key step in NH3 oxidation.
Abstract: Treatment of the bis(imino)pyridine molybdenum η6-benzene complex (iPrPDI)Mo(η6-C6H6) (iPrPDI, 2,6-(2,6-iPr2C6H3N═CMe)2C5H3N) with NH3 resulted in coordination induced haptotropic rearrangement of the arene to form (iPrPDI)Mo(NH3)2(η2-C6H6). Analogous η2-ethylene and η2-cyclohexene complexes were also synthesized, and the latter was crystallographically characterized. All three compounds undergo loss of the η2-coordinated ligand followed by N–H bond activation, bis(imino)pyridine modification, and H2 loss. A dual ammonia activation approach has been discovered whereby reversible M–L cooperativity and coordination induced bond weakening likely contribute to dihydrogen formation. Significantly, the weakened N–H bonds in (iPrPDI)Mo(NH3)2(η2-C2H4) enabled hydrogen atom abstraction and synthesis of a terminal nitride from coordinated ammonia, a key step in NH3 oxidation.

68 citations

Journal ArticleDOI
TL;DR: Rate constants for hydrogen abstraction by a nonyl radical from 20 complexes of N-heterocyclic carbenes and boranes (NHC-boranes) have been determined by the pyridine-2-thioneoxycarbonyl (PTOC) competition kinetic method at a single concentration point.

68 citations

Journal ArticleDOI
TL;DR: Calculations of the potential energy surface (PES) for the formation of indene involving hydrocarbon species abundant in combustion, including benzene, phenyl, propargyl, and methyl radicals, and acetylene have been performed to investigate the build-up of an additional cyclopenta moiety over the existing six-member aromatic ring.
Abstract: Ab initio G3(MP2,CC)//B3LYP calculations of the potential energy surface (PES) for the formation of indene involving hydrocarbon species abundant in combustion, including benzene, phenyl, propargyl, and methyl radicals, and acetylene, have been performed to investigate the build-up of an additional cyclopenta moiety over the existing six-member aromatic ring. They were followed by statistical calculations of high-pressure-limit thermal rate constants in the temperature range of 300−3000 K for all reaction steps utilizing conventional Rice−Ramsperger−Kassel−Marcus (RRKM) and transition-state (TST) theories. The hydrogen abstraction acetylene addition (HACA) type mechanism, which involves the formation of benzyl radical followed by addition of acetylene, is shown to have low barriers (12−16 kcal/mol) and to be a viable candidate to account for indene formation in combustion flames, such as the 1,3-butadiene flame, where this mechanism was earlier suggested as the major indene formation route (Granata et al....

68 citations


Network Information
Related Topics (5)
Reaction rate constant
42.9K papers, 1M citations
93% related
Alkyl
223.5K papers, 2M citations
91% related
Molecule
52.4K papers, 1.2M citations
90% related
Radical
38.9K papers, 1.1M citations
89% related
Ruthenium
40.1K papers, 996.5K citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202382
2022142
2021120
2020121
2019104
2018124