scispace - formally typeset
Topic

Hydrogen bond

About: Hydrogen bond is a(n) research topic. Over the lifetime, 57701 publication(s) have been published within this topic receiving 1306326 citation(s).


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: Weiner et al. as mentioned in this paper derived a new molecular mechanical force field for simulating the structures, conformational energies, and interaction energies of proteins, nucleic acids, and many related organic molecules in condensed phases.
Abstract: We present the derivation of a new molecular mechanical force field for simulating the structures, conformational energies, and interaction energies of proteins, nucleic acids, and many related organic molecules in condensed phases. This effective two-body force field is the successor to the Weiner et al. force field and was developed with some of the same philosophies, such as the use of a simple diagonal potential function and electrostatic potential fit atom centered charges. The need for a 10-12 function for representing hydrogen bonds is no longer necessary due to the improved performance of the new charge model and new van der Waals parameters. These new charges are determined using a 6-31G* basis set and restrained electrostatic potential (RESP) fitting and have been shown to reproduce interaction energies, free energies of solvation, and conformational energies of simple small molecules to a good degree of accuracy. Furthermore, the new RESP charges exhibit less variability as a function of the molecular conformation used in the charge determination. The new van der Waals parameters have been derived from liquid simulations and include hydrogen parameters which take into account the effects of any geminal electronegative atoms. The bonded parameters developed by Weiner et al. were modified as necessary to reproduce experimental vibrational frequencies and structures. Most of the simple dihedral parameters have been retained from Weiner et al., but a complex set of 4 and yj parameters which do a good job of reproducing the energies of the low-energy conformations of glycyl and alanyl dipeptides has been developed for the peptide backbone.

12,107 citations

Journal ArticleDOI

[...]

TL;DR: The hydrogen bond is the most important of all directional intermolecular interactions, operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological.
Abstract: The hydrogen bond is the most important of all directional intermolecular interactions. It is operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological. Research into hydrogen bonds experienced a stagnant period in the 1980s, but re-opened around 1990, and has been in rapid development since then. In terms of modern concepts, the hydrogen bond is understood as a very broad phenomenon, and it is accepted that there are open borders to other effects. There are dozens of different types of X-H.A hydrogen bonds that occur commonly in the condensed phases, and in addition there are innumerable less common ones. Dissociation energies span more than two orders of magnitude (about 0.2-40 kcal mol(-1)). Within this range, the nature of the interaction is not constant, but its electrostatic, covalent, and dispersion contributions vary in their relative weights. The hydrogen bond has broad transition regions that merge continuously with the covalent bond, the van der Waals interaction, the ionic interaction, and also the cation-pi interaction. All hydrogen bonds can be considered as incipient proton transfer reactions, and for strong hydrogen bonds, this reaction can be in a very advanced state. In this review, a coherent survey is given on all these matters.

4,729 citations

Book

[...]

13 Mar 1997
TL;DR: In this paper, the authors discuss the properties of strong and moderate hydrogen bonds in biological molecules and include inclusion of inclusion compounds in the graph set theory of graph set theories, which is used in this paper.
Abstract: 1. Brief History 2. Nature and Properties 3. Strong Hydrogen Bonds 4. Moderate Hydrogen Bonds 5. Weak Hydrogen Bonds 6. Cooperativity, Patterns, Graph Set Theory, Liquid Crystals 7. Disorder, Proton Transfer, Isotope Effect, Ferroelectrics, Transitions 8. Water, Water Dimers, Ices, Hydrates 9. Inclusion Compounds 10. Hydrogen Bonding in Biological Molecules 11. Methods

4,356 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a force field for simulation of nucleic acids and proteins is presented, which is based on the ECEPP, UNECEPP, and EPEN energy refinement software.
Abstract: We present the development of a force field for simulation of nucleic acids and proteins. Our approach began by obtaining equilibrium bond lengths and angles from microwave, neutron diffraction, and prior molecular mechanical calculations, torsional constants from microwave, NMR, and molecular mechanical studies, nonbonded parameters from crystal packing calculations, and atomic charges from the fit of a partial charge model to electrostatic potentials calculated by ab initio quantum mechanical theory. The parameters were then refined with molecular mechanical studies on the structures and energies of model compounds. For nucleic acids, we focused on methyl ethyl ether, tetrahydrofuran, deoxyadenosine, dimethyl phosphate, 9-methylguanine-l-methylcytosine hydrogen-bonded complex, 9-methyladenine-l-methylthymine hydrogen-bonded complex, and 1,3-dimethyluracil base-stacked dimer. Bond, angle, torsional, nonbonded, and hydrogen-bond parameters were varied to optimize the agreement between calculated and experimental values for sugar pucker energies and structures, vibrational frequencies of dimethyl phosphate and tetrahydrofuran, and energies for base pairing and base stacking. For proteins, we focused on 4>,'lt maps of glycyl and alanyl dipeptides, hydrogen-bonding interactions involving the various protein polar groups, and energy refinement calculations on insulin. Unlike the models for hydrogen bonding involving nitrogen and oxygen electron donors, an adequate description of sulfur hydrogen bonding required explicit inclusion of lone pairs. There are two fundamental problems in simulating the struc­ tural and energetic properties of molecules: the first is how to choose an analytical been placed E(R) which correctly describes the energy of the system in terms of its 3N degrees of freedom. The second is how the simulation can search or span conforma­ tional space (R) in order to answer questions posed by the scientist interested in the properties of the system. For complex systems, solution to the first problem are an es­ sential first step in attacking the second problem, and thus, considerable effort has been placed in developing analytical functions that are simple enough to allow one to simulate the properties of complex molecules yet accurate enough to obtain meaningful estimates for structures and energies. In the case of the structures and thermodynamic stabilities of saturated hydrocarbons in inert solvents or the gas phase, the first problem has been essentially solved by molecular mechanics ap­ proaches of Allinger, I Ermer and Lifson,2 and their co-workers. However, for polar and ionic molecules in condensed phases, unsolved questions remain as to the best form of the analytical function E(R). In the area of proteins and peptides, seminal work has come from the Scheraga 3 and Lifson 4 schools. The Scheraga group has used both crystal packing (intermolecular) and con­ formational properties of peptides to arrive at force fields ECEPP, UNECEPP, and EPEN for modeling structural and thermodynamic properties of peptides and proteins. Levitt, using the energy refinement software developed in the Lifson group, has proposed a force field for proteins based on calculations on lysozyme,S and Gelin and Karplus have adapted this software along with many parameters from the Scheraga studies to do molecular dynamics

4,261 citations

Journal ArticleDOI

[...]

3,917 citations


Network Information
Related Topics (5)
Molecule
52.4K papers, 1.2M citations
93% related
Crystal structure
100.9K papers, 1.5M citations
93% related
Ligand
67.7K papers, 1.3M citations
93% related
Alkyl
223.5K papers, 2M citations
87% related
Ab initio
57.3K papers, 1.6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202261
20211,620
20201,598
20191,598
20181,668
20171,745