scispace - formally typeset
Search or ask a question
Topic

Hydrogen bond

About: Hydrogen bond is a research topic. Over the lifetime, 57701 publications have been published within this topic receiving 1306326 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The assumption that the asymmetry in the hydrogen electron density does not fluctuate and is persistent in all local molecular liquid water environments is inconsistent with longer-ranged tetrahedral network signatures present in experimental x-ray scattering intensity and structure factor data for Q < 6.5 A(-1).
Abstract: It has been suggested, based on x-ray absorption spectroscopy (XAS) experiments on liquid water [Wernet, Ph., et al. (2004) Science 304, 995–999], that a condensed-phase water molecule’s asymmetric electron density results in only two hydrogen bonds per water molecule on average. The larger implication of the XAS interpretation is that the conventional view of liquid water being a tetrahedrally coordinated random network is now replaced by a structural organization that instead strongly favors hydrogen-bonded water chains or large rings embedded in a weakly hydrogen-bonded disordered network. This work reports that the asymmetry of the hydrogen density exhibited in the XAS experiments agrees with reported x-ray scattering structure factors and intensities for Q > 6.5 A−1. However, the assumption that the asymmetry in the hydrogen electron density does not fluctuate and is persistent in all local molecular liquid water environments is inconsistent with longer-ranged tetrahedral network signatures present in experimental x-ray scattering intensity and structure factor data for Q < 6.5 A−1. polarizability tetrahedral liquid x-ray absorption spectroscopy x-ray scattering hydrogen-bonding

242 citations

Journal ArticleDOI
TL;DR: In this paper, the Asp-His-Fe interaction is found at the active site of many metalloenzymes and is believed to modulate the character of histidine as a metal ligand.
Abstract: The buried charge of Asp-235 in cytochrome c peroxidase (CCP) forms an important hydrogen bond to the histidine ligand of the heme iron. The Asp-His-metal interaction, which is similar to the catalytic triad of serine proteases, is found at the active site of many metalloenzymes and is believed to modulate the character of histidine as a metal ligand. We have examined the influence of this interaction in CCP on the function, redox properties, and iron zero-field splitting in the native ferric state and its effect on the Trp-191 free radical site in the oxidized ES complex. Unlike D235A and D235N, the mutation D235E introduces very little perturbation in the X-ray crystal structure of the enzyme active site, with only minor changes in the geometry of the carboxylate-histidine interaction and no observable change at the Trp-191 free radical site. More significant effects are observed in the position of the helix containing residue Glu-235. However, the small change in hydrogen bond geometry is all that is necessary to (1) increase the reduction potential by 70 mV, (2) alter the anisotropy of the Trp-191 free radical EPR, (3) affect the activity and spin-state equilibrium, and (4) reduce the strength of the iron ligand field as measured by the zero-field splitting. The changes in the redox potential with substitution are correlated with the observed zero-field splitting, suggesting that redox control is exerted through the heme ligand by a combination of electrostatic and ligand field effects. The replacement of Asp-235 with Glu appears to result in a significantly weaker hydrogen bond in which the proton resides essentially with His-175. This hydrogen bond is nevertheless strong enough to prevent the reorientation of Trp-191 and the conversion to one of two low-spin states observed for D235A and D235N. The Asp-His-Fe interaction is therefore as important in defining the redox properties and imidazolate character of His-175 as has been proposed, yet its most important role in peroxidase function may be to correctly orient Trp-191 for efficient coupling of the free radical to the heme and to maintain a high-spin 5-coordinate heme center.

242 citations

Journal ArticleDOI
TL;DR: Hydrogen bonds between urea units allow self-organization of π systems in mono- and bithiophenes into fibers as shown schematically.
Abstract: Hydrogen bonds between urea units allow self-organization of π systems in mono- and bithiophenes into fibers as shown schematically. In these fibers there is a surprisingly high mobility of charge carriers as determined by pulse-radiolysis time-resolved microwave conductivity measurements.

242 citations

Journal ArticleDOI
22 Apr 1993-Nature
TL;DR: In this article, the authors present high-resolution optical and microwave spectra of the benzene-ammonia dimer in the gas phase, which show that the ammonia molecule resides above the benene plane and undergoes free or nearly free internal rotation.
Abstract: AMINES have long been characterized as amphoteric (acting as both donor and acceptor) in terms of their hydrogen-bond interactions in the condensed phase. With the possible exception of (NH_3)_2, however, no gas-phase complexes exhibiting hydrogen-bond donation by ammonia, the ‘simplest amine’, have been observed. Here we present high-resolution optical and microwave spectra of the benzene–ammonia dimer in the gas phase, which show that the ammonia molecule resides above the benzene plane and undergoes free or nearly free internal rotation. In the vibrationally averaged structure, the C_3 symmetry axis of NH_3 is tilted by about 58° relative to the benzene C_6 axis, such that the ammonia protons interact with the benzene π-cloud. Our ab initio calcula-tions predict a 'monodentate' minimum-energy structure, with very low barriers to rotation of ammonia. The larger separation of the two molecular components, and the smaller dissociation energy, relative to the benzene–water dimer reflect the weak hydrogen-bond donor capability of ammonia, but the observed geometry greatly resembles the amino–aromatic interaction found naturally in proteins.

241 citations

Journal ArticleDOI
TL;DR: A survey of known protein structures reveals that approximately 70% of serine residues and at least 85% (potentially 100%) of threonine residues in helices make hydrogen bonds to carbonyl oxygen atoms in the preceding turn of the helix.

241 citations


Network Information
Related Topics (5)
Molecule
52.4K papers, 1.2M citations
93% related
Crystal structure
100.9K papers, 1.5M citations
93% related
Ligand
67.7K papers, 1.3M citations
93% related
Alkyl
223.5K papers, 2M citations
87% related
Ab initio
57.3K papers, 1.6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,352
20224,647
20211,701
20201,599
20191,598
20181,668