scispace - formally typeset
Search or ask a question
Topic

Hydrogen bond

About: Hydrogen bond is a research topic. Over the lifetime, 57701 publications have been published within this topic receiving 1306326 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Differences between the interfacial hydrogen bonding patterns and the intra-chain ones further substantiate the notion that protein complexes formed by rigid binding may be far away from the global minimum conformations.
Abstract: To understand further, and to utilize, the interactions across protein-protein interfaces, we carried out an analysis of the hydrogen bonds and of the salt bridges in a collection of 319 non-redundant protein-protein interfaces derived from high-quality X-ray structures. We found that the geometry of the hydrogen bonds across protein interfaces is generally less optimal and has a wider distribution than typically observed within the chains. This difference originates from the more hydrophilic side chains buried in the binding interface than in the folded monomer interior. Protein folding differs from protein binding. Whereas in folding practically all degrees of freedom are available to the chain to attain its optimal configuration, this is not the case for rigid binding, where the protein molecules are already folded, with only six degrees of translational and rotational freedom available to the chains to achieve their most favorable bound configuration. These constraints enforce many polar/charged residues buried in the interface to form weak hydrogen bonds with protein atoms, rather than strongly hydrogen bonding to the solvent. Since interfacial hydrogen bonds are weaker than the intra-chain ones to compete with the binding of water, more water molecules are involved in bridging hydrogen bond networks across the protein interface than in the protein interior. Interfacial water molecules both mediate non-complementary donor-donor or acceptor-acceptor pairs, and connect non-optimally oriented donor-acceptor pairs. These differences between the interfacial hydrogen bonding patterns and the intra-chain ones further substantiate the notion that protein complexes formed by rigid binding may be far away from the global minimum conformations. Moreover, we summarize the pattern of charge complementarity and of the conservation of hydrogen bond network across binding interfaces. We further illustrate the utility of this study in understanding the specificity of protein-protein associations, and hence in docking prediction and molecular (inhibitor) design.

435 citations

Journal ArticleDOI
TL;DR: The high-resolution structure of photoactive yellow protein supports a mechanism whereby electrostatic interactions create an active site poised for photon-induced rearrangements and efficient protein-mediated signal transduction.
Abstract: A photosensing protein directs light energy captured by its chromophore into a photocycle. The protein's structure must accommodate the photocycle and promote the resulting chemical or conformational changes that lead to signal transduction. The 1.4 A crystallographic structure of photoactive yellow protein, determined by multiple isomorphous replacement methods, provides the first view at atomic resolution of a protein with a photocycle. The alpha/beta fold, which differs from the original chain tracing, shows striking similarity to distinct parts of the signal transduction proteins profilin and the SH2 domain. In the dark state structure of photoactive yellow protein, the novel 4-hydroxycinnamyl chromophore, covalently attached to Cys69, is buried within the major hydrophobic core of the protein and is tethered at both ends by hydrogen bonds. In the active site, the yellow anionic form of the chromophore is stabilized by hydrogen bonds from the side chains of Tyr42 and buried Glu46 to the phenolic oxygen atom and by electrostatic complementarity with the positively charged guanidinium group of Arg52. Thr50 further interlocks Tyr42, Glu46, and Arg52 through a network of active site hydrogen bonds. Arg52, located in a concavity of the protein surface adjacent to the dominant patch of negative electrostatic potential, shields the chromophore from solvent and is positioned to form a gateway for the phototactic signal. Overall, the high-resolution structure of photoactive yellow protein supports a mechanism whereby electrostatic interactions create an active site poised for photon-induced rearrangements and efficient protein-mediated signal transduction.

433 citations

Journal ArticleDOI
TL;DR: In this article, a detailed study of the dimerization constant and lifetime of 2-ureido-4[1H]-pyrimidinone 1b was presented.
Abstract: 2-Ureido-4[1H]-pyrimidinones are known to dimerize via a strong quadruple hydrogen bond array. A detailed study of the dimerization constant and lifetime of the dimer is presented here. Excimer fluorescence of pyrene-labeled 2-ureido-4[1H]-pyrimidinone 1b was used to determine a dimerization constant Kdim of 6 × 107 M-1 in CHCl3, 1 × 107 M-1 in chloroform saturated with water, and 6 × 108 M-1 in toluene (all at 298 K). Under these conditions, the preexchange lifetime of the similar dimers of both 1d and 1e is 170 ms in CDCl3, 80 ms in wet CDCl3, and 1.7 s in toluene-d8, as determined by dynamic NMR spectroscopy. Association rate constants were calculated from the Kdim values and the preexchange lifetimes. The resulting values are significantly lower than the diffusion-controlled association rate constants calculated using the Stokes−Einstein and the Debeije equations. This difference is ascribed to a tautomeric equilibrium of the monomer between the dimerizing 4[1H]-pyrimidinone and nondimerizing 6[1H]-py...

433 citations

Journal ArticleDOI
TL;DR: A seven-coordinate Ru(IV) dimer complex containing a [HOHOH](-) bridging ligand that has a short O...O distance and is hydrogen bonded to two water molecules may contribute to a deeper understanding of the mechanism for catalytic water oxidation.
Abstract: With the inspiration from an oxygen evolving complex (OEC) in Photosystem II (PSII), a mononuclear Ru(II) complex with a tetradentate ligand containing two carboxylate groups has been synthesized and structurally characterized. This Ru(II) complex showed efficient catalytic properties toward water oxidation by the chemical oxidant cerium(IV) ammonium nitrate. During the process of catalytic water oxidation, Ru(III) and Ru(IV) species have been successfully isolated as intermediates. To our surprise, X-ray crystallography together with HR-MS revealed that the Ru(IV) species is a seven-coordinate Ru(IV) dimer complex containing a [HOHOH]− bridging ligand. This bridging ligand has a short O···O distance and is hydrogen bonded to two water molecules. The discovery of this very uncommon seven-coordinate Ru(IV) dimer together with a hydrogen bonding network may contribute to a deeper understanding of the mechanism for catalytic water oxidation. It will also provide new possibilities for the design of more effic...

432 citations

Journal ArticleDOI
TL;DR: A new electrostatic model that takes into consideration all electrostatic interactions up to 12 residues in distance in the helix and random-coil conformations, as well as the effect of ionic strength, has been implemented and found that for those peptides correctly predicted from the point of view of circular dichroism, the prediction of the NMR parameters is very good.

432 citations


Network Information
Related Topics (5)
Molecule
52.4K papers, 1.2M citations
93% related
Crystal structure
100.9K papers, 1.5M citations
93% related
Ligand
67.7K papers, 1.3M citations
93% related
Alkyl
223.5K papers, 2M citations
87% related
Ab initio
57.3K papers, 1.6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,352
20224,647
20211,701
20201,599
20191,598
20181,668