scispace - formally typeset
Search or ask a question
Topic

Hydrogen bond

About: Hydrogen bond is a research topic. Over the lifetime, 57701 publications have been published within this topic receiving 1306326 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors report ab initio path integral molecular dynamics studies on the quantum nature of the hydrogen bond and show that quantum nuclear effects weaken weak hydrogen bonds but strengthen relatively strong ones.
Abstract: Hydrogen bonds are weak, generally intermolecular bonds, which hold much of soft matter together as well as the condensed phases of water, network liquids, and many ferroelectric crystals. The small mass of hydrogen means that they are inherently quantum mechanical in nature, and effects such as zero-point motion and tunneling must be considered, though all too often these effects are not considered. As a prominent example, a clear picture for the impact of quantum nuclear effects on the strength of hydrogen bonds and consequently the structure of hydrogen bonded systems is still absent. Here, we report ab initio path integral molecular dynamics studies on the quantum nature of the hydrogen bond. Through a systematic examination of a wide range of hydrogen bonded systems we show that quantum nuclear effects weaken weak hydrogen bonds but strengthen relatively strong ones. This simple correlation arises from a competition between anharmonic intermolecular bond bending and intramolecular bond stretching. A simple rule of thumb is provided that enables predictions to be made for hydrogen bonded materials in general with merely classical knowledge (such as hydrogen bond strength or hydrogen bond length). Our work rationalizes the influence of quantum nuclear effects, which can result in either weakening or strengthening of the hydrogen bonds, and the corresponding structures, across a broad range of hydrogen bonded materials. Furthermore, it highlights the need to allow flexible molecules when anharmonic potentials are used in force field-based studies of quantum nuclear effects.

363 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the intermolecular hydrogen bond C=O...H-O between fluorenone and methanol molecules is significantly strengthened in the electronically excited-state upon photoexcitation of the hydrogen-bonded FM-MeOH complex, which can be used to explain well all the spectral features of fluore None chromophore in alcoholic solvents.
Abstract: The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state hydrogen-bonding dynamics of fluorenone (FN) in hydrogen donating methanol (MeOH) solvent. The infrared spectra of the hydrogen-bonded FN-MeOH complex in both the ground state and the electronically excited states are calculated using the TDDFT method, since the ultrafast hydrogen-bonding dynamics can be investigated by monitoring the vibrational absorption spectra of some hydrogen-bonded groups in different electronic states. We demonstrated that the intermolecular hydrogen bond C=O...H-O between fluorenone and methanol molecules is significantly strengthened in the electronically excited-state upon photoexcitation of the hydrogen-bonded FM-MeOH complex. The hydrogen bond strengthening in electronically excited states can be used to explain well all the spectral features of fluorenone chromophore in alcoholic solvents. Furthermore, the radiationless deactivation via internal conversion (IC) can be facilitated by the hydrogen bond strengthening in the excited state. At the same time, quantum yields of the excited-state deactivation via fluorescence are correspondingly decreased. Therefore, the total fluorescence of fluorenone in polar protic solvents can be drastically quenched by hydrogen bonding.

363 citations

Journal ArticleDOI
TL;DR: In this paper, the Compton profile anisotropies of ordinary ice were found to correspond to distances of 1.72 and 2.85, which are close to the hydrogen bond length and the nearest-neighbor O-O distance, respectively.
Abstract: Periodic intensity variations in the measured Compton profile anisotropies of ordinary ice $\mathrm{I}h$ correspond to distances of 1.72 and 2.85 \AA{}, which are close to the hydrogen bond length and the nearest-neighbor O-O distance, respectively. We interpret this result as direct evidence for the substantial covalent nature of the hydrogen bond. Very good quantitative agreement between the data and a fully quantum mechanical bonding model for ice $\mathrm{I}h$ and the disagreement with a purely electrostatic (classical) bonding model support this interpretation and demonstrate how exquisitely sensitive Compton scattering is to the phase of the electronic wave function.

362 citations

Journal ArticleDOI
TL;DR: In this article, the Hartree−Fock (HF) approximation and the 6-31G** basis set of atomic orbitals were used to optimize 30 DNA base pairs within Cs symmetry.
Abstract: Hydrogen bonding of DNA bases was investigated by reliable nonempirical ab initio calculations. Gradient optimization was carried out on 30 DNA base pairs using the Hartree−Fock (HF) approximation and the 6-31G** basis set of atomic orbitals. The optimizations were performed within Cs symmetry. However, the harmonic vibrational analysis indicates that 13 of the studied base pairs are intrinsically nonplanar. Interaction energies of base pairs were then evaluated at the planar optimized geometries with inclusion of the electron correlation energy using the second-order Moller−Plesset (MP2) method. The stabilization energies of the studied base pairs range from −24 to −9 kcal/mol, and the calculated gas phase interaction enthalpies agree well (within 2 kcal/mol) with the available experimental values. The binding energies and molecular structures of the base pairs are not determined solely by the hydrogen bonds, but they are also strongly influenced by the polarity of the monomers and by a wide variety of s...

362 citations

Journal ArticleDOI
TL;DR: In this paper, a set of representative hydrogen bonded dimers has been studied employing density functional theory (DFT) in the Perdew, Burke, and Ernzerhof (PBE) generalized gradient approximation.
Abstract: A set of representative hydrogen bonded dimers has been studied employing density functional theory (DFT) in the Perdew, Burke, and Ernzerhof (PBE) generalized gradient approximation. Our results for hydrogen bond (hb) strengths and geometry parameters show good agreement with those obtained by Moller−Plesset (MP2) or Coupled-Cluster (CC) methods. We observe that the reliability of DFT-PBE for the description of hbs is closely connected to the bond directionality (i.e. the angle between D−H and H···A where D and A are the donor and the acceptor atoms or regions, respectively, in the hb interaction): with increasing deviation from a linear D−H···A arrangement the accuracy of the DFT-PBE decreases.

362 citations


Network Information
Related Topics (5)
Molecule
52.4K papers, 1.2M citations
93% related
Crystal structure
100.9K papers, 1.5M citations
93% related
Ligand
67.7K papers, 1.3M citations
93% related
Alkyl
223.5K papers, 2M citations
87% related
Ab initio
57.3K papers, 1.6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,352
20224,647
20211,701
20201,599
20191,598
20181,668