scispace - formally typeset
Search or ask a question
Topic

Hydrogen peroxide

About: Hydrogen peroxide is a research topic. Over the lifetime, 42583 publications have been published within this topic receiving 1043732 citations. The topic is also known as: H2O2 & dioxidane.


Papers
More filters
Journal ArticleDOI
TL;DR: Iron copper zeolite (Fe-Cu-ZSM-5) with aqueous hydrogen peroxide is active for the selective oxidation of methane to methanol giving meethanol selectivity and 10 % conversion in a closed catalytic cycle (see scheme).
Abstract: Iron copper zeolite (Fe-Cu-ZSM-5) with aqueous hydrogen peroxide is active for the selective oxidation of methane to methanol. Iron is involved in the activation of the carbon–hydrogen bond, while copper allows methanol to form as the major product. The catalyst is stable, re-usable and activates methane giving >90 % methanol selectivity and 10 % conversion in a closed catalytic cycle (see scheme).

478 citations

Journal ArticleDOI
TL;DR: Ascorbate is photoregenerated in the thylakoids from the MDA radicals produced in a reaction of asCorbate peroxidase for the scavenging of hydrogen peroxide.
Abstract: Ascorbate peroxidase, a key enzyme for the scavenging of hydrogen peroxide in chloroplasts, was found in a thylakoid-bound form in spinach chloroplasts at comparable activity to that in the stroma. The activity of peroxidase was detectable in the thylakoids only when prepared by an ascorbate-containing medium, and enriched in the stroma thylakoids. The thylakoid enzyme was not released from the membranes by either 2 mM EDTA, 1 M KC1, 2 M NaBr or 2 M NaSCN, but was solubilized by detergents. Enzymatic properties of the thylakoid-bound ascorbate peroxidase were very similar to those of the stromal ascorbate peroxidase. Thylakoid-bound ascorbate peroxidase could scavenge the hydrogen peroxide either added or photoproduced by the thylakoids. No photoreductio n of hydrogen peroxide was observed, however, in the thylakoids whose ascorbate peroxidase was inhibited by KCN and thiol reagents or inactivated by the treatment with ascorbate-depletion. The primary oxidation product of ascorbate in a reaction of ascorbate peroxidase, monodehydroascorbate (MDA) radical, was photoreduced in the thylakoids, as detected by the quenching of chlorophyll fluorescence, disappearance of EPR signals of the MDA radicals and the MDA radical-induced oxygen evolution. Thus, ascorbate is photoregenerated in the thylakoids from the MDA radicals produced in a reaction of ascorbate peroxidase for the scavenging of hydrogen peroxide.

478 citations

Journal ArticleDOI
TL;DR: In this article, the reactions of nanomolar concentrations of Cu(I) and Cu(II) with H 2 O 2 have been investigated in 2.0mM NaHCO 3 and 0.7m NaCl at pH 8.0.

475 citations

Journal ArticleDOI
TL;DR: Human synovial fluid, human cerebrospinal fluid and rat pleural-exudate fluid were found to contain micromolar concentrations of 'free' iron, which would be sufficient to allow formation of the hydroxyl radical from superoxide and hydrogen peroxide generated in vivo.
Abstract: Bleomycin in the presence of iron(II) degrades DNA to form a thiobarbituric acid-reactive product. This has been made the basis of a specific assay method for 'free' iron in biological fluids. Human synovial fluid, human cerebrospinal fluid and rat pleural-exudate fluid were found to contain micromolar concentrations of 'free' iron, which would be sufficient to allow formation of the hydroxyl radical from superoxide and hydrogen peroxide generated in vivo. This assay method does not detect iron bound to transport proteins or to enzymes.

473 citations

Journal ArticleDOI
15 Sep 2006-Langmuir
TL;DR: It is found that segmented nanorods with one Au end and one poly(pyrrole) end containing catalase, an enzyme that decomposes hydrogen peroxide nonelectrochemically, perform the overall catalytic reaction at a rate similar to that of nanorod containing Au and Pt segments, supporting the bipolar electrochemical propulsion mechanism for bimetallic nanorODs.
Abstract: Bimetallic nanorods are propelled in aqueous solutions by the catalytic decomposition of hydrogen peroxide to oxygen and water. Several mechanisms (interfacial tension gradients, bubble recoil, viscous Brownian ratchet, self-electrophoresis) have been proposed for the transduction of chemical to mechanical energy in this system. From Tafel plots of anodic and cathodic hydrogen peroxide reactions at various metal (Au, Pt, Rh, Ni, Ru, and Pd) ultramicroelectrodes, we determine the potential at which the anodic and cathodic reaction rates are equal for each metal. These measurements allow one to predict the direction of motion of all possible bimetallic combinations according to the bipolar electrochemical (or self-electrophoretic) mechanism. These predictions are consistent with the observed direction of motion in all cases studied, providing strong support for the mechanism. We also find that segmented nanorods with one Au end and one poly(pyrrole) end containing catalase, an enzyme that decomposes hydroge...

471 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
88% related
Adsorption
226.4K papers, 5.9M citations
85% related
Amino acid
124.9K papers, 4M citations
84% related
Nanoparticle
85.9K papers, 2.6M citations
82% related
Nitric oxide
48.1K papers, 2.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20231,644
20223,392
2021897
20201,112
20191,301