scispace - formally typeset

Topic

Hydrostatic equilibrium

About: Hydrostatic equilibrium is a(n) research topic. Over the lifetime, 2451 publication(s) have been published within this topic receiving 62172 citation(s).


Papers
More filters
Journal ArticleDOI
Abstract: The described investigation is concerned with the solution of the non-LTE optically thick transfer equations for hydrogen, carbon, and other constituents to determine semiempirical models for six components of the quiet solar chromosphere. For a given temperature-height distribution, the solution is obtained of the equations of statistical equilibrium, radiative transfer for lines and continua, and hydrostatic equilibrium to find the ionization and excitation conditions for each atomic constituent. The emergent spectrum is calculated, and a trial and error approach is used to adjust the temperature distribution so that the emergent spectrum is in best agreement with the observed one. The relationship between semiempirical models determined in this way and theoretical models based on radiative equilibrium is discussed by Avrett (1977). Harvard Skylab EUV observations are used to determine models for a number of quiet-sun regions.

2,093 citations

Journal ArticleDOI
TL;DR: A preconditioner is used which, in the hydrostatic limit, is an exact integral of the Poisson operator and so leads to a single algorithm that seamlessly moves from nonhydrostatic to hydrostatic limits, competitive with the fastest ocean climate models in use today.
Abstract: The numerical implementation of an ocean model based on the incompressible Navier Stokes equations which is designed for studies of the ocean circulation on horizontal scales less than the depth of the ocean right up to global scale is described. A "pressure correction" method is used which is solved as a Poisson equation for the pressure field with Neumann boundary conditions in a geometry as complicated as that of the ocean basins. A major objective of the study is to make this inversion, and hence nonhydrostatic ocean modeling, efficient on parallel computers. The pressure field is separated into surface, hydrostatic, and nonhydrostatic components. First, as in hydrostatic models, a two-dimensional problem is inverted for the surface pressure which is then made use of in the three-dimensional inversion for the nonhydrostatic pressure. Preconditioned conjugate-gradient iteration is used to invert symmetric elliptic operators in both two and three dimensions. Physically motivated preconditioners are designed which are efficient at reducing computation and minimizing communication between processors. Our method exploits the fact that as the horizontal scale of the motion becomes very much larger than the vertical scale, the motion becomes more and more hydrostatic and the three- dimensional Poisson operator becomes increasingly anisotropic and dominated by the vertical axis. Accordingly, a preconditioner is used which, in the hydrostatic limit, is an exact integral of the Poisson operator and so leads to a single algorithm that seamlessly moves from nonhydrostatic to hydrostatic limits. Thus in the hydrostatic limit the model is "fast," competitive with the fastest ocean climate models in use today based on the hydrostatic primitive equations. But as the resolution is increased, the model dynamics asymptote smoothly to the Navier Stokes equations and so can be used to address small- scale processes. A "finite-volume" approach is employed to discretize the model in space in which property fluxes are defined normal to faces that delineate the volumes. The method makes possible a novel treatment of the boundary in which cells abutting the bottom or coast may take on irregular shapes and be "shaved" to fit the boundary. The algorithm can conveniently exploit massively parallel computers and suggests a domain decomposition which allocates vertical columns of ocean to each processing unit. The resulting model, which can handle arbitrarily complex geometry, is efficient and scalable and has been mapped on to massively parallel multiprocessors such as the Connection Machine (CM5) using data-parallel FORTRAN and the Massachusetts Institute of Technology data-flow machine MONSOON using the implicitly parallel language Id. Details of the numerical implementation of a model which has been designed for the study of dynamical processes in the ocean from the convective, through the geostrophic eddy, up to global scale are set out. The "kernel" algorithm solves the incompressible Navier Stokes equations on the sphere, in a geometry as complicated as that of the ocean basins with ir- regular coastlines and islands. (Here we use the term "Navier Stokes" to signify that the full nonhydrostatic equations are being employed; it does not imply a particular constitutive relation. The relevant equations for modeling the full complex- ity of the ocean include, as here, active tracers such as tem- perature and salt.) It builds on ideas developed in the compu- tational fluid community. The numerical challenge is to ensure that the evolving velocity field remains nondivergent. Most

2,015 citations

Journal ArticleDOI
Abstract: We consider the problem of the gravitational collapse of isothermal spheres by applying the similarity method to the gas-dynamic flow. We argue that a previous solution obtained by Larson and Penston to describe the stages prior to core formation is physically artificial; however, we find that the flow following core formation does exhibit self-similar properties.The latter similarity solution shows that the inflow in the dense central regions proceeds virtually at free-fall before the material is arrested by a strong radiating shock upon impact with the surface of the core. Two types of similarity solutions are obtained: one is the prototype for starting states which correspond to unstable hydrostatic equilibrium; the other, for states where the mass of the cloud slightly exceeds the maximum limit allowable for hydrostatic equilibrium. In both cases, an r/sup -2/ law holds for the density distribution in the static or nearly static outer envelope, and an r/sup -3///sup 2/ law holds for the freely falling inner envelope. Rapid infall is initiated at the head of the expansion wave associated with the dropping of the central regions from beneath the envelope. A numerical example is presented which is shown to be in good agreement with the envelopemore » dynamics obtained in previous studies of star formation using hydrodynamic codes.« less

1,680 citations

Journal ArticleDOI
Abstract: An analytical model for the quiescent inhomogeneous solar corona is developed on the basis of the hypothesis that looplike structures are the basic coronal building blocks. By assuming that quiescent loop structures observed in X-rays are in hydrostatic equilibrium, it is demonstrated that such loops must have their temperature maximum located near their apex and that substantial nonradiative energy deposition must occur along most of their length. The calculations yield a unique relation among loop temperature, pressure, and size, which fits the X-ray observations of quiescent structures well and is consistent with the initial assumption of hydrostatic equilibrium. The results suggest that the coronal loops visible in X-rays represent a relatively steady-state equilibrium of the confined plasmas and that fluctuations in such quantities as the local heating rate can lead to dynamically unstable states in which the loop plasma does not attain a temperature sufficient for X-ray emission. A parameterization of various proposed coronal heating theories is also developed within the context of the analytical model.

1,368 citations

Journal ArticleDOI
Abstract: Ocean models based on consistent hydrostatic, quasi-hydrostatic, and nonhydrostatic equation sets are formulated and discussed. The quasi-hydrostatic and nonhydrostatic sets are more accurate than the widely used hydrostatic primitive equations. Quasi-hydrostatic models relax the precise balance between gravity and pressure gradient forces by including in a consistent manner cosine-of-latitude Coriolis terms which are neglected in primitive equation models. Nonhydrostatic models employ the full incompressible Navier Stokes equations; they are required in the study of small-scale phenomena in the ocean which are not in hydrostatic balance. We outline a solution strategy for the Navier Stokes model on the sphere that performs efficiently across the whole range of scales in the ocean, from the convective scale to the global scale, and so leads to a model of great versatility. In the hydrostatic limit the Navier Stokes model involves no more computational effort than those models which assume strict hydrostatic balance on all scales. The strategy is illustrated in simulations of laboratory experiments in rotating convection on scales of a few centimeters, simulations of convective and baroclinic instability of the mixed layer on the 1- to 10-km scale, and simulations of the global circulation of the ocean.

1,189 citations

Network Information
Related Topics (5)
Magnetic field

167.5K papers, 2.3M citations

81% related
Turbulence

112.1K papers, 2.7M citations

80% related
Boundary layer

64.9K papers, 1.4M citations

76% related
Boundary value problem

145.3K papers, 2.7M citations

75% related
Particle

96.5K papers, 1.9M citations

75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
202163
202087
201998
201892
201781