scispace - formally typeset
Search or ask a question
Topic

Hydrostatic equilibrium

About: Hydrostatic equilibrium is a research topic. Over the lifetime, 2451 publications have been published within this topic receiving 62172 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article , a nonsingular exact model for compact stellar objects by using the Einstein field equations was obtained, which is consistent with stellar stars with anisotropic quark matter in the absence of electric field.
Abstract: We obtain a new nonsingular exact model for compact stellar objects by using the Einstein field equations. The model is consistent with stellar star with anisotropic quark matter in the absence of electric field. Our treatment considers spacetime geometry which is static and spherically symmetric. Ansatz of a rational form of one of the gravitational potentials is made to generate physically admissible results. The balance of gravitational, hydrostatic, and anisotropic forces within the stellar star is tested by analysing the Tolman-Oppenheimer-Volkoff (TOV) equation. Several stellar objects with masses and radii comparable with observations found in the past are generated. Our model obeys different stability tests and energy conditions. The profiles for the potentials, matter variables, stability, and energy conditions are well behaved.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors used Ansys System Coupling (Mechanical and CFX) for floating and fixed rings of a deformable annular seal to analyze the influence of the cylindrical shell thickness, the inlet and outlet edge dimensions, inlet pressure, and shaft radial displacement on the hydrostatic pressure distribution and the clearance value on length, leakages, stress-strain state, and radial force.
Abstract: Solving the hydroelastic problem by using Ansys System Coupling (Mechanical and CFX) for floating and fixed rings of a deformable annular seal made it possible to analyze the influence of the cylindrical shell thickness, the inlet and outlet edge dimensions, inlet pressure, and shaft radial displacement on the hydrostatic pressure distribution and the clearance value on length, leakages, stress-strain state, and radial force. The analysis of static stability at an inlet pressure of 10 MPa for the basic seal design showed that the static radial force in the range of radial movements of the shaft from 0 to 50% of the clearance is centering, even though the inlet part of the seal clearance has a confusor, and the outlet part has diffuser form. However, the dynamic coefficients of the fixed sealing ring have a negative value of direct stiffness but positive values of direct and cross-coupled damping and cross-coupled stiffness. Verifying computational 2D and 3D models with experimental results from the literature showed that the maximum relative error does not exceed 10.7% for the hydrostatic pressure, 18% for the clearance, and 8.6% for the leakage value. Simultaneously, according to the trend, all calculated dependencies are identical to the experimental results.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the authors consider the problem of buckling of a thin spherical shell embedded in a medium that is much softer than the shell and determine critical buckling pressures in the practical scenarios of hydrostatic and uniaxial compressive loading states.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the effect of the EoS parameter on the collapse of a star undergoing dissipative collapse and showed that the stiffness of the fluid which is related to its compressibility, is compromised in the presence of pressure anisotropy and heat flow.

1 citations


Network Information
Related Topics (5)
Magnetic field
167.5K papers, 2.3M citations
81% related
Turbulence
112.1K papers, 2.7M citations
80% related
Boundary layer
64.9K papers, 1.4M citations
76% related
Boundary value problem
145.3K papers, 2.7M citations
75% related
Particle
96.5K papers, 1.9M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023282
2022708
202167
202089
201998
201893