scispace - formally typeset
Search or ask a question
Topic

Hydrostatic pressure

About: Hydrostatic pressure is a research topic. Over the lifetime, 35703 publications have been published within this topic receiving 796898 citations.


Papers
More filters
Journal ArticleDOI
16 Apr 1965-Science
TL;DR: A method is described which permits measurement of sap pressure in the xylem of vascular plants, and finds that in tall conifers there is a hydrostatic pressure gradient that closely corresponds to the height and seems surprisingly little influenced by the intensity of transpiration.
Abstract: A method is described which permits measurement of sap pressure in the xylem of vascular plants. As long predicted, sap pressures during transpiration are normally negative, ranging from -4 or -5 atmospheres in a damp forest to -80 atmospheres in the desert. Mangroves and other halophytes maintain at all times a sap pressure of -35 to -60 atmospheres. Mistletoes have greater suction than their hosts, usually by 10 to 20 atmospheres. Diurnal cycles of 10 to 20 atmospheres are common. In tall conifers there is a hydrostatic pressure gradient that closely corresponds to the height and seems surprisingly little influenced by the intensity of transpiration. Sap extruded from the xylem by gas pressure on the leaves is practically pure water. At zero turgor this procedure gives a linear relation between the intracellular concentration and the tension of the xylem.

4,079 citations

Journal ArticleDOI
TL;DR: Lowering the tumour IFP with specific signal-transduction antagonists might be a useful approach to improving anticancer drug efficacy.
Abstract: Many solid tumours show an increased interstitial fluid pressure (IFP), which forms a barrier to transcapillary transport. This barrier is an obstacle in tumour treatment, as it results in inefficient uptake of therapeutic agents. There are a number of factors that contribute to increased IFP in the tumour, such as vessel abnormalities, fibrosis and contraction of the interstitial matrix. Lowering the tumour IFP with specific signal-transduction antagonists might be a useful approach to improving anticancer drug efficacy.

1,904 citations

Journal ArticleDOI
TL;DR: The changing force that cells experience needs to be considered when trying to understand the complex nature of tumorigenesis.
Abstract: Cells within tissues are continuously exposed to physical forces including hydrostatic pressure, shear stress, and compression and tension forces. Cells dynamically adapt to force by modifying their behaviour and remodelling their microenvironment. They also sense these forces through mechanoreceptors and respond by exerting reciprocal actomyosin- and cytoskeletal-dependent cell-generated force by a process termed 'mechanoreciprocity'. Loss of mechanoreciprocity has been shown to promote the progression of disease, including cancer. Moreover, the mechanical properties of a tissue contribute to disease progression, compromise treatment and might also alter cancer risk. Thus, the changing force that cells experience needs to be considered when trying to understand the complex nature of tumorigenesis.

1,706 citations

Journal ArticleDOI
Paul H. Yancey1
TL;DR: Organic osmolytes are small solutes used by cells of numerous water-stressed organisms and tissues to maintain cell volume and have applications in biotechnology, agriculture and medicine, including in vitro rescue of the misfolded protein of cystic fibrosis.
Abstract: counteract perturbations by urea (eg in elasmobranchs and mammalian kidney), inorganic ions, and hydrostatic pressure in deep-sea animals Trehalose and proline in overwintering insects stabilize membranes at subzero temperatures Trehalose in insects and yeast, and anionic polyols in microorganisms around hydrothermal vents, can protect proteins from denaturation by high temperatures Third, stabilizing solutes appear to be used in nature only to counteract perturbants of macromolecules, perhaps because stabilization is detrimental in the absence of perturbation Some of these solutes have applications in biotechnology, agriculture and medicine, including in vitro rescue of the misfolded protein of cystic fibrosis However, caution is warranted if high levels cause overstabilization of proteins

1,573 citations

Journal ArticleDOI
08 Mar 2019-Science
TL;DR: This study demonstrates twisted bilayer graphene to be a distinctively tunable platform for exploring correlated states by inducing superconductivity at a twist angle larger than 1.1°—in which correlated phases are otherwise absent—by varying the interlayer spacing with hydrostatic pressure.
Abstract: Materials with flat electronic bands often exhibit exotic quantum phenomena owing to strong correlations. An isolated low-energy flat band can be induced in bilayer graphene by simply rotating the layers by 1.1°, resulting in the appearance of gate-tunable superconducting and correlated insulating phases. In this study, we demonstrate that in addition to the twist angle, the interlayer coupling can be varied to precisely tune these phases. We induce superconductivity at a twist angle larger than 1.1°—in which correlated phases are otherwise absent—by varying the interlayer spacing with hydrostatic pressure. Our low-disorder devices reveal details about the superconducting phase diagram and its relationship to the nearby insulator. Our results demonstrate twisted bilayer graphene to be a distinctively tunable platform for exploring correlated states.

1,479 citations


Network Information
Related Topics (5)
Particle size
69.8K papers, 1.7M citations
74% related
Magnetization
107.8K papers, 1.9M citations
73% related
Phase (matter)
115.6K papers, 2.1M citations
73% related
Calcium
78.5K papers, 2.2M citations
73% related
Amorphous solid
117K papers, 2.2M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023473
20221,012
20211,029
20201,061
20191,081
20181,056