scispace - formally typeset
Search or ask a question
Topic

Hydrostatic stress

About: Hydrostatic stress is a research topic. Over the lifetime, 1568 publications have been published within this topic receiving 37773 citations.


Papers
More filters
01 Apr 1998
TL;DR: In this paper, a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics is presented.
Abstract: With the increasing use of advanced ceramic materials in high-temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior that is inherently time-dependent and that is hereditary in the sense that the current behavior depends not only on current conditions but also on the material's thermomechanical history. Most current analytical life prediction methods for both subcritical crack growth and creep models use elastic stress fields to predict the time-dependent reliability response of components subjected to elevated service temperatures. Inelastic response at high temperatures has been well documented in the materials science literature for these material systems, but this issue has been ignored by the engineering design community. From a design engineer's perspective, it is imperative to emphasize that accurate predictions of time-dependent reliability demand accurate stress field information. Ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture the creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperatures. The objective of this effort at the NASA Lewis Research Center has been to formulate a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the effort has focused on inelastic deformation behavior associated with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.
Journal ArticleDOI
TL;DR: In this article, the authors presented theoretical expressions giving the effective elastic moduli of a cubic or isotropic homogeneous solid under hydrostatic stress as functions of strain and temperature, and derived the temperature dependence of these expressions within the fourth-order quasi-harmonic approximation of lattice dynamics.
Dissertation
01 Jan 2017
TL;DR: In this paper, two different approaches based on phase field theory are employed to study the precipitation kinetics of a second phase in a metal, with a special focus on the application of hydride formation in hexagonal close-packed metals.
Abstract: Hydrogen embrittlement can manifest itself as hydride formation in structures when in contact with hydrogen-rich environments, e.g. in space and nuclear power applications. To supplant experimentation, modeling of such phenomena is beneficial to make life prediction reduce cost and increase the understanding. In the present work, two different approaches based on phase field theory are employed to study the precipitation kinetics of a second phase in a metal, with a special focus on the application of hydride formation in hexagonal close-packed metals. For both presented models, a single component of the non-conserved order parameter is utilized to represent the microstructural evolution. Throughout the modelling the total free energy of the system is minimized through the time-dependent Ginzburg-Landau equation, which includes a sixth order Landau potential in the first model, whereas one of fourth order is used for the second model. The first model implicitly incorporates the stress field emanating from a sharp crack through the usage of linear elastic fracture mechanics and the governing equation is solved numerically for both isotropic and anisotropic bodies by usage of the finite volume method. The second model is applied to plate and notched cantilever geometries, and it includes an anisotropic expansion of the hydrides that is caused by the hydride precipitation. For this approach, the mechanical and phase transformation aspects are coupled and solved simultaneously for an isotropic material using the finite element method. Depending on the Landau potential coefficients and the crack-induced hydrostatic stress, for the first model the second-phase is found to form in a confined region around the crack tip or in the whole material depending on the material properties. From the pilot results obtained with the second model, it is shown that the applied stress and considered anisotropic swelling induces hydride formation in preferential directions and it is localized in high stress concentration areas. The results successfully demonstrate the ability of both approaches to model second-phase formation kinetics that is triggered by flaw-induced stresses and their capability to reproduce experimentally observed hydride characteristics such as precipitation location, shape and direction.
DOI
01 Jan 2020
TL;DR: In this article, an analytical model is developed to study the influence of initial hydrostatic stress and piezo elasticity on elastic waves in a piezoelectric layer embedded on a gravitating half space with slip interface.
Abstract: In this paper, an analytical model is developed to study the influence of initial hydrostatic stress and piezo elasticity on elastic waves in a piezoelectric layer embedded on a gravitating half space with slip interface. The piezo electric layer considered for this study is hexagonal (6mm) material. The problem is described using equations of linear elasticity with initial hydrostatic stress and piezo elastic inclusions. Displacement functions in terms of velocity potential are introduced to separate the motion's equations and electric conduction equations. The frequency equations are obtained by stress free and electrically shorted boundary conditions at the gravitating half space. The numerical computation is carried out for the PZT-4A material. The obtained results are presented graphically to show the effect of piezo elastic coupling and hydrostatic stress on the elastic waves.

Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
86% related
Ultimate tensile strength
129.2K papers, 2.1M citations
84% related
Finite element method
178.6K papers, 3M citations
83% related
Grain boundary
70.1K papers, 1.5M citations
78% related
Microstructure
148.6K papers, 2.2M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202318
202246
202134
202047
201948
201839