scispace - formally typeset

Topic

Hydroxide

About: Hydroxide is a(n) research topic. Over the lifetime, 40287 publication(s) have been published within this topic receiving 586277 citation(s). The topic is also known as: hydroxides & hydroxide compounds.
Papers
More filters

Journal ArticleDOI
Ming Gong1, Yanguang Li1, Hailiang Wang1, Yongye Liang1  +6 moreInstitutions (3)
TL;DR: The synthesis of ultrathin nickel-iron layered double hydroxide nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs) induced the formation of NiFe-LDH, which exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
Abstract: Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal–air batteries. Here, we report the synthesis of ultrathin nickel–iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.

1,993 citations



Journal ArticleDOI
Matthew L. Pierce1, Carleton B. Moore1Institutions (1)
Abstract: Adsorption isotherms in solutions with ionic strengths of 0.01 at 25°C were measured over the arsenite and arsenate concentration range 10−7−10−3 M and the pH range 4–10. At low concentrations, these isotherms obeyed equations of the Langmuir type. At higher concentrations the adsorption isotherms were linear, indicating the existence of more than one type of surface site on the amorphous iron hydroxide adsorbent. Removal of arsenite and arsenate by amorphous iron hydroxide throughout the concentration range were determined as a function of pH. By careful selection of the relative concentration of arsenic and amorphous iron hydroxide and pH, removals on the order of 92% can be achieved.

1,115 citations


Journal ArticleDOI
Hao Chen1, Linfeng Hu1, Min Chen1, Yan Yan1  +1 moreInstitutions (1)
Abstract: A facile and novel one-step method of growing nickel-cobalt layered double hydroxide (Ni-Co LDH) hybrid films with ultrathin nanosheets and porous nanostructures on nickel foam is presented using cetyltrimethylammonium bromide as nanostructure growth assisting agent but without any adscititious alkali sources and oxidants. As pseudocapacitors, the as-obtained Ni-Co LDH hybrid film-based electrodes display a significantly enhanced specific capacitance (2682 F g−1 at 3 A g−1, based on active materials) and energy density (77.3 Wh kg−1 at 623 W kg−1), compared to most previously reported electrodes based on nickel-cobalt oxides/hydroxides. Moreover, the asymmetric supercapacitor, with the Ni-Co LDH hybrid film as the positive electrode material and porous freeze-dried reduced graphene oxide (RGO) as the negative electrode material, exhibits an ultrahigh energy density (188 Wh kg−1) at an average power density of 1499 W kg−1 based on the mass of active material, which greatly exceeds the energy densities of most previously reported nickel or cobalt oxide/hydroxide-based asymmetric supercapacitors.

1,029 citations


Journal ArticleDOI
Zhaoping Liu1, Renzhi Ma1, Minoru Osada1, Nobuo Iyi1  +3 moreInstitutions (1)
TL;DR: This paper describes a systematic study on the synthesis, anion exchange, and delamination of Co-Al layered double hydroxide (LDH), with the aim of achieving fabrication and clarifying the properties of LDH nanosheet/polyanion composite films.
Abstract: This paper describes a systematic study on the synthesis, anion exchange, and delamination of Co-Al layered double hydroxide (LDH), with the aim of achieving fabrication and clarifying the properties of LDH nanosheet/polyanion composite films. Co-Al-CO3 LDH hexagonal platelets of 4 mum in lateral size were synthesized by the urea method under optimized reaction conditions. The as-prepared CO3(2-)-LDH was converted to Cl- -LDH by treating with a NaCl-HCl mixed solution, retaining its high crystallinity and hexagonal platelike morphology. LDHs intercalated with a variety of anions (such as NO3-, ClO4-, acetate, lactate, dodecyl sulfate, and oleate) were further prepared from Cl- -LDH via an anion-exchange process employing corresponding salts. Exchanged products in various anion forms were found to show different delamination behaviors in formamide. Among them, best results were observed for NO3- -LDH in terms of the exfoliating degree and the quality of the exfoliated nanosheets. The delamination gave a pink transparent suspension containing well-defined nanosheets with lateral sizes of up to 2 microm. The resulting nanosheets were assembled layer-by-layer with an anionic polymer, poly(sodium styrene 4-sulfonate) (PSS), onto quartz glass substrates to produce composite films. Magnetic circular dichroism (MCD) measurements revealed that the assembled multilayer films exhibited an interesting magneto-optical response.

1,013 citations


Network Information
Related Topics (5)
Aqueous solution

189.5K papers, 3.4M citations

95% related
Adsorption

226.4K papers, 5.9M citations

93% related
Oxide

213.4K papers, 3.6M citations

92% related
Catalysis

400.9K papers, 8.7M citations

90% related
Nanoparticle

85.9K papers, 2.6M citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202242
20211,001
20201,428
20191,672
20181,634
20171,476