scispace - formally typeset
Search or ask a question
Topic

Hydroxysteroid dehydrogenase

About: Hydroxysteroid dehydrogenase is a research topic. Over the lifetime, 1087 publications have been published within this topic receiving 28468 citations. The topic is also known as: hydroxysteroid dehydrogenase.


Papers
More filters
Journal ArticleDOI
TL;DR: One of them, the 3β-(N-heptanoyl- l -phenylalanine- l-leucine-aminomethyl)-3α-hydroxy-5α-androstan-17-one (42) inhibited the enzyme with an IC50 value of 227 nM, which is twice as potent as the natural substrate Δ4-dione when used itself as an inhibitor.

28 citations

Journal ArticleDOI
TL;DR: This work has shown that extension from this position on the pyrazole template is well tolerated and the optimization of such systems is under investigation, indicating that the pyridyl group interacts beneficially in the active site.

28 citations

Journal ArticleDOI
TL;DR: The results suggest that Japanese eel ovarian 20β-HSD is composed of membrane-bound and soluble activities, and that the membrane- bound component is stimulated by gonadotropin.

28 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the high levels of type II 17beta-hydroxysteroid dehydrogenase (17beta-HSD) present in ZR-75-1 cells were largely responsible for the facile conversion of 2-MeO-E2 to 2-methoxyestrone and also for the selective insensitivity to other nonsteroidal anticancer agents.
Abstract: 2-Methoxyestradiol (2-MeO-E2), a nonpolar endogenous metabolite of 17beta-estradiol, has strong antiproliferative, apoptotic, and antiangiogenic actions. Among the four human breast cancer cell lines tested (MCF-7, T-47D, ZR-75-1, and MDA-MB-435s), the ZR-75-1 cells were selectively insensitive to the antiproliferative actions of 2-MeO-E2, although these cells had a similar sensitivity as other cell lines to several other anticancer agents (5-fluorouracil, mitomycin C, doxorubicin, colchicine, vinorelbine, and paclitaxel). Mechanistically, this insensitivity is largely attributable to the presence of high levels of a steroid-selective metabolizing enzyme, the type II 17beta-hydroxysteroid dehydrogenase (17beta-HSD), in the ZR-75-1 cells, which rapidly converts 2-MeO-E2 to the inactive 2-methoxyestrone, but this enzyme does not metabolically inactivate other nonsteroidal anticancer agents. The type II 17beta-HSD-mediated conversion of 2-MeO-E2 to 2-methoxyestrone in ZR-75-1 cells followed the first-order kinetics, with a very short half-life (approximately 2 hours). In comparison, the T-47D, MCF-7, and MDA-MB-435s human breast cancer cells, which were highly sensitive to 2-MeO-E2, had very low or undetectable catalytic activity for the conversion of 2-MeO-E2 to 2-methoxyestrone. Reverse transcription-PCR analysis of the mRNA levels of three known oxidative 17beta-HSD isozymes (types II, IV, and VIII) revealed that only the type II isozyme was selectively expressed in the ZR-75-1 cells, whereas the other two isozymes were expressed in all four cell lines. Taken together, our results showed, for the first time, that the high levels of type II 17beta-HSD present in ZR-75-1 cells were largely responsible for the facile conversion of 2-MeO-E2 to 2-methoxyestrone and also for the selective insensitivity to the antiproliferative actions of 2-MeO-E2.

28 citations

Journal ArticleDOI
TL;DR: Three series of steroid derivatives, enones 1, enols 2 and saturated alcohols 3, were easily synthesized from estrone according to a sequence of three reactions: an aldol condensation with an aromatic aldehyde to afford 1, the carbonyl reduction of 1 to obtain the enol 2, and the double bond reduction of 2 to give 3 with the R(a-g) group 16beta-oriented.

28 citations


Network Information
Related Topics (5)
Hormone
38.3K papers, 1.2M citations
83% related
Estrogen
40.7K papers, 1.7M citations
83% related
Estrogen receptor
34.2K papers, 1.4M citations
80% related
Secretion
24.8K papers, 1.2M citations
78% related
Receptor
159.3K papers, 8.2M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202319
202217
20218
202016
201916
20186