scispace - formally typeset
Search or ask a question
Topic

Hyperbolic manifold

About: Hyperbolic manifold is a research topic. Over the lifetime, 3661 publications have been published within this topic receiving 77025 citations.


Papers
More filters
Book
01 Jan 1995
TL;DR: In this article, Katok and Mendoza introduced the concept of asymptotic invariants for low-dimensional dynamical systems and their application in local hyperbolic theory.
Abstract: Part I. Examples and Fundamental Concepts Introduction 1. First examples 2. Equivalence, classification, and invariants 3. Principle classes of asymptotic invariants 4. Statistical behavior of the orbits and introduction to ergodic theory 5. Smooth invariant measures and more examples Part II. Local Analysis and Orbit Growth 6. Local hyperbolic theory and its applications 7. Transversality and genericity 8. Orbit growth arising from topology 9. Variational aspects of dynamics Part III. Low-Dimensional Phenomena 10. Introduction: What is low dimensional dynamics 11. Homeomorphisms of the circle 12. Circle diffeomorphisms 13. Twist maps 14. Flows on surfaces and related dynamical systems 15. Continuous maps of the interval 16. Smooth maps of the interval Part IV. Hyperbolic Dynamical Systems 17. Survey of examples 18. Topological properties of hyperbolic sets 19. Metric structure of hyperbolic sets 20. Equilibrium states and smooth invariant measures Part V. Sopplement and Appendix 21. Dynamical systems with nonuniformly hyperbolic behavior Anatole Katok and Leonardo Mendoza.

3,962 citations

Journal ArticleDOI
TL;DR: In the case of negative Euler characteristic (genus greater than 1) such a metric gives a hyperbolic structure: any small neighborhood in a surface is isometric to a neighborhood in the hyper-bolic plane, and the surface itself is the quotient of the hyperbola by a discrete group of motions as discussed by the authors.
Abstract: 1. A conjectural picture of 3-manifolds. A major thrust of mathematics in the late 19th century, in which Poincare had a large role, was the uniformization theory for Riemann surfaces: that every conformai structure on a closed oriented surface is represented by a Riemannian metric of constant curvature. For the typical case of negative Euler characteristic (genus greater than 1) such a metric gives a hyperbolic structure: any small neighborhood in the surface is isometric to a neighborhood in the hyperbolic plane, and the surface itself is the quotient of the hyperbolic plane by a discrete group of motions. The exceptional cases, the sphere and the torus, have spherical and Euclidean structures. Three-manifolds are greatly more complicated than surfaces, and I think it is fair to say that until recently there was little reason to expect any analogous theory for manifolds of dimension 3 (or more)—except perhaps for the fact that so many 3-manifolds are beautiful. The situation has changed, so that I feel fairly confident in proposing the

1,641 citations

Book
01 Jan 1994
TL;DR: In this paper, an exposition of the theoretical foundations of hyperbolic manifolds is presented, which is intended to be used both as a textbook and as a reference for algebra and topology courses.
Abstract: This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. The reader is assumed to have a basic knowledge of algebra and topology at the first year graduate level of an American university. The book is divided into three parts. The first part, Chapters 1-7, is concerned with hyperbolic geometry and discrete groups. The second part, Chapters 8-12, is devoted to the theory of hyperbolic manifolds. The third part, Chapter 13, integrates the first two parts in a development of the theory of hyperbolic orbifolds. There are over 500 exercises in this book and more than 180 illustrations.

1,527 citations

BookDOI
01 Jan 1992
TL;DR: In this article, the authors provide an exposition of some fundamental results of hyperbolic manifolds, while being as self-contained, complete, detailed and unified as possible, and much space is devoted to the 3D case, based on the representation of three manifolds as glued ideal tetrahedra.
Abstract: Focussing on the geometry of hyperbolic manifolds, the aim here is to provide an exposition of some fundamental results, while being as self-contained, complete, detailed and unified as possible. Following some classical material on the hyperbolic space and the Teichmuller space, the book centers on the two fundamental results: Mostow's rigidity theorem (including a complete proof, following Gromov and Thurston) and Margulis' lemma. These then form the basis for studying Chabauty and geometric topology; a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory; and much space is devoted to the 3D case: a complete and elementary proof of the hyperbolic surgery theorem, based on the representation of three manifolds as glued ideal tetrahedra.

874 citations


Network Information
Related Topics (5)
Cohomology
21.5K papers, 389.8K citations
90% related
Manifold
18.7K papers, 362.8K citations
89% related
Lie group
18.3K papers, 381K citations
88% related
Conjecture
24.3K papers, 366K citations
87% related
Symplectic geometry
18.2K papers, 363K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202325
202255
202122
202036
201928
201841