scispace - formally typeset
Search or ask a question

Hyperbolic partial differential equation

About: Hyperbolic partial differential equation is a research topic. Over the lifetime, 14025 publications have been published within this topic receiving 339059 citations. The topic is also known as: hyperbolic differential equation.

More filters
01 Jan 2002
TL;DR: The CLAWPACK software as discussed by the authors is a popular tool for solving high-resolution hyperbolic problems with conservation laws and conservation laws of nonlinear scalar scalar conservation laws.
Abstract: Preface 1. Introduction 2. Conservation laws and differential equations 3. Characteristics and Riemann problems for linear hyperbolic equations 4. Finite-volume methods 5. Introduction to the CLAWPACK software 6. High resolution methods 7. Boundary conditions and ghost cells 8. Convergence, accuracy, and stability 9. Variable-coefficient linear equations 10. Other approaches to high resolution 11. Nonlinear scalar conservation laws 12. Finite-volume methods for nonlinear scalar conservation laws 13. Nonlinear systems of conservation laws 14. Gas dynamics and the Euler equations 15. Finite-volume methods for nonlinear systems 16. Some nonclassical hyperbolic problems 17. Source terms and balance laws 18. Multidimensional hyperbolic problems 19. Multidimensional numerical methods 20. Multidimensional scalar equations 21. Multidimensional systems 22. Elastic waves 23. Finite-volume methods on quadrilateral grids Bibliography Index.

5,791 citations

01 Jan 1964

4,652 citations

01 Jan 1990
TL;DR: In this paper, the authors describe the derivation of conservation laws and apply them to linear systems, including the linear advection equation, the Euler equation, and the Riemann problem.
Abstract: I Mathematical Theory- 1 Introduction- 11 Conservation laws- 12 Applications- 13 Mathematical difficulties- 14 Numerical difficulties- 15 Some references- 2 The Derivation of Conservation Laws- 21 Integral and differential forms- 22 Scalar equations- 23 Diffusion- 3 Scalar Conservation Laws- 31 The linear advection equation- 311 Domain of dependence- 312 Nonsmooth data- 32 Burgers' equation- 33 Shock formation- 34 Weak solutions- 35 The Riemann Problem- 36 Shock speed- 37 Manipulating conservation laws- 38 Entropy conditions- 381 Entropy functions- 4 Some Scalar Examples- 41 Traffic flow- 411 Characteristics and "sound speed"- 42 Two phase flow- 5 Some Nonlinear Systems- 51 The Euler equations- 511 Ideal gas- 512 Entropy- 52 Isentropic flow- 53 Isothermal flow- 54 The shallow water equations- 6 Linear Hyperbolic Systems 58- 61 Characteristic variables- 62 Simple waves- 63 The wave equation- 64 Linearization of nonlinear systems- 641 Sound waves- 65 The Riemann Problem- 651 The phase plane- 7 Shocks and the Hugoniot Locus- 71 The Hugoniot locus- 72 Solution of the Riemann problem- 721 Riemann problems with no solution- 73 Genuine nonlinearity- 74 The Lax entropy condition- 75 Linear degeneracy- 76 The Riemann problem- 8 Rarefaction Waves and Integral Curves- 81 Integral curves- 82 Rarefaction waves- 83 General solution of the Riemann problem- 84 Shock collisions- 9 The Riemann problem for the Euler equations- 91 Contact discontinuities- 92 Solution to the Riemann problem- II Numerical Methods- 10 Numerical Methods for Linear Equations- 101 The global error and convergence- 102 Norms- 103 Local truncation error- 104 Stability- 105 The Lax Equivalence Theorem- 106 The CFL condition- 107 Upwind methods- 11 Computing Discontinuous Solutions- 111 Modified equations- 1111 First order methods and diffusion- 1112 Second order methods and dispersion- 112 Accuracy- 12 Conservative Methods for Nonlinear Problems- 121 Conservative methods- 122 Consistency- 123 Discrete conservation- 124 The Lax-Wendroff Theorem- 125 The entropy condition- 13 Godunov's Method- 131 The Courant-Isaacson-Rees method- 132 Godunov's method- 133 Linear systems- 134 The entropy condition- 135 Scalar conservation laws- 14 Approximate Riemann Solvers- 141 General theory- 1411 The entropy condition- 1412 Modified conservation laws- 142 Roe's approximate Riemann solver- 1421 The numerical flux function for Roe's solver- 1422 A sonic entropy fix- 1423 The scalar case- 1424 A Roe matrix for isothermal flow- 15 Nonlinear Stability- 151 Convergence notions- 152 Compactness- 153 Total variation stability- 154 Total variation diminishing methods- 155 Monotonicity preserving methods- 156 l1-contracting numerical methods- 157 Monotone methods- 16 High Resolution Methods- 161 Artificial Viscosity- 162 Flux-limiter methods- 1621 Linear systems- 163 Slope-limiter methods- 1631 Linear Systems- 1632 Nonlinear scalar equations- 1633 Nonlinear Systems- 17 Semi-discrete Methods- 171 Evolution equations for the cell averages- 172 Spatial accuracy- 173 Reconstruction by primitive functions- 174 ENO schemes- 18 Multidimensional Problems- 181 Semi-discrete methods- 182 Splitting methods- 183 TVD Methods- 184 Multidimensional approaches

3,827 citations

03 Mar 1971
TL;DR: In this paper, the authors consider the problem of minimizing the sum of a differentiable and non-differentiable function in the context of a system governed by a Dirichlet problem.
Abstract: Principal Notations.- I Minimization of Functions and Unilateral Boundary Value Problems.- 1. Minimization of Coercive Forms.- 1.1. Notation.- 1.2. The Case when ?: is Coercive.- 1.3. Characterization of the Minimizing Element. Variational Inequalities.- 1.4. Alternative Form of Variational Inequalities.- 1.5. Function J being the Sum of a Differentiable and Non-Differentiable Function.- 1.6. The Convexity Hypothesis on $$ {U_{ad}} $$.- 1.7. Orientation.- 2. A Direct Solution of Certain Variational Inequalities.- 2.1. Problem Statement.- 2.2. An Existence and Uniqueness Theorem.- 3. Examples.- 3.1. Function Spaces on ?.- 3.2. Function Spaces on ?.- 3.3. Subspaces of Hm(?).- 3.4. Examples of Boundary Value Problems.- 3.5. Unilateral Boundary Value Problems (I).- 3.6. Unilateral Boundary Value Problems (II).- 3.7. Unilateral Boundary Value Problems (III).- 3.8. Unilateral Boundary Value Problems Case of Systems.- 3.9. Elliptic Operators of Order Greater than Two.- 3.10. Non-differentiable Functionals.- 4. A Comparison Theorem.- 4.1. General Results.- 4.2. An Application.- 5. Non Coercive Forms.- 5.1. Convexity of the Set of Solutions.- 5.2. Approximation Theorem.- Notes.- II Control of Systems Governed by Elliptic Partial Differential Equations.- 1. Control of Elliptic Variational Problems.- 1.1. Problem Statement.- 1.2. First Remarks on the Control Problem.- 1.3. The Set of Inequalities Defining the Optimal Control.- 2. First Applications.- 2.1. System Governed by the Dirichlet Problem Distributed Control.- 2.2. The Case with No Constraints.- 2.3. System Governed by a Neumann Problem Distributed Control.- 2.4. System Governed by a Neumann Problem Boundary Control.- 2.5. Local and Global Constraints.- 2.6. System Governed by a Differential System.- 2.7. System Governed by a 4th Order Differential Operator.- 2.8. Orientation.- 3. A Family of Examples with N = 0 and $$ {U_{ad}} $$ Arbitrary.- 3.1. General Case.- 3.2. Application (I).- 3.3. Application (II).- 4. Observation on the Boundary.- 4.1. System Governed by a Dirichlet Problem (I).- 4.2. Some Results on Non-homogeneous Dirichlet Problems.- 4.3. System Governed by a Dirichlet Problem (II).- 4.4. System Governed by a Neumann Problem.- 5. Control and Observation on the Boundary. Case of the Dirichlet Problem.- 5.1. Orientation.- 5.2. Boundary Control in L2(?).- 5.3. A "Controllability-Like" Problem.- 5.4. Pointwise Control and Observation.- 6. Constraints on the State.- 6.1. Orientation.- 6.2. Control and Constraints on the Boundary.- 7. Existence Results for Optimal Controls.- 7.1. Orientation.- 7.2. Distributed Control.- 7.3. Singular Perturbation of the System.- 7.4. Boundary Control.- 7.5. Control of Systems Governed by Unilateral Problems.- 8. First Order Necessary Conditions.- 8.1. Statement of the Theorem.- 8.2. Proof of the Theorem.- 8.2.1. "Algebraic" Transformation.- 8.2.2. General Remarks on the Utilization of (8.13.).- 8.2.3. Proof that dj,?0.- Notes.- III Control of Systems Governed by Parabolic Partial Differential Equations.- 1. Equations of Evolution.- 1.1. Data.- 1.2. Evolution Problems.- 1.3. Proof of Uniqueness.- 1.4. Proof of Existence.- 1.5. Some Examples.- 1.6. Semi-groups.- 2. Problems of Control.- 2.1. Notation. Immediate Properties.- 2.2. Set of Inequalities Characterizing the Optimal Control.- 2.3. Case (i). Set of Inequalities.- 2.4. Case (ii). Set of Inequalities.- 2.5. Orientation.- 3. Examples.- 3.1. Mixed Dirichlet Problem for a Second Order Parabolic Equation.- 3.1.1. C = Injection Map of L2(0, T V)?L2(Q).- 3.1.2. C = Identity Map of L2(0, T V) into itself.- 3.1.3. Observation of the Final State.- 3.2. Mixed Neumann Problem for a Parabolic Equation of Second Order.- 3.2.1. Case (i).- 3.2.2. Case (ii).- 3.3. System of Equations and Equations of Higher Order.- 3.3.1. System of Equations.- 3.3.2. Higher Order Equations.- 3.4. Additional Results.- 3.5. Orientation.- 4. Decoupling and Integro-Differential Equation of Riccati Type (I).- 4.1. Notation and Assumptions.- 4.2. Operator P(t), Function r(t).- 4.3. Formal Calculations.- 4.4. The Finite Dimensional Case Approximation.- 4.5. Passage to the Limit.- 4.6. Integro-Differential Equation of Riccati Type.- 4.7. Connections with the Hamilton-Jacobi Theory.- 4.8. The Case where Constraints are Present.- 4.9. Various Remarks.- 4.9.1. Direct Study of the "Riccati Equation".- 4.9.2. Another Approach to the Direct Study of the "Riccati Equation".- 4.9.3. Yet Another Approach to the Direct Study of the "Riccati Equation".- 5. Decoupling and Integro-Differential Equation of Riccati Type (II).- 5.1. Application of the Schwartz-Kernel Theorem.- 5.2. Example of a Mixed Neumann Problem with Boundary Control.- 5.3. Example of a Mixed Neumann Problem with Observation of the Final State.- 5.4. Mixed Neumann Problem, Observation of the Final State and Constraints in a Vector Space.- 5.5. Remarks on Decoupling in the Presence of Constraints.- 6. Behaviour as T ? + ?.- 6.1. Orientation and Hypotheses.- 6.2. The Case T = ?.- 6.3. Passage to the Limit as T ? + ?.- 7. Problems which are not Necessarily Coercive.- 7.1. Distributed Observation.- 7.2. Observation of the Final State.- 7.3. Examples where N = 0 and $$ {U_{ad}} $$ is not Bounded.- 8. Other Observations of the State and other Types of Control.- 8.1. Pointwise Observation of the State.- 8.2. Pointwise Control.- 8.3. Control and Observation on the Boundary.- 9. Boundary Control and Observation on the Boundary or of the Final State for a System Governed by a Mixed Dirichlet Problem.- 9.1. Orientation and Problem Statement.- 9.2. Non Homogeneous Mixed Dirichlet Problem.- 9.3. Definition of $$ \frac{{\partial y}}{{\partial {v_A}}} $$ Observation.- 9.4. Cost Function Equations of Optimal Control.- 9.5. Regular Control.- 9.6. Observation of the Final State.- 9.7. Observation of the Final State, Second Order Parabolic Operator.- 10. Controllability.- 10.1. Problem Statement.- 10.2. Controllability and Uniqueness.- 10.3. Super-Controllability and Super-Uniqueness.- 11. Control via Initial Conditions Estimation.- 11.1. Problem Statement. General Results.- 11.2. Examples.- 11.3. Controllability.- 11.4. An Estimation Problem.- 12. Duality.- 12.1. General Remarks.- 12.2. Example.- 13. Constraints on the Control and the State.- 13.1. A General Result.- 13.2. Applications (I).- 13.3. Applications (II).- 14. Non Quadratic Cost Functions.- 14.1. Orientation.- 14.2. An Example.- 14.3. Remarks on Decoupling.- 15. Existence Results for Optimal Controls.- 15.1. Orientation.- 15.2. Non-linear Problem with Distributed Control (I).- 15.3. Non-linear Problem with Distributed Control. Singular Perturbation.- 15.4. Non-linear Problem. Boundary Control.- 15.5. Utilization of Convexity and the Maximum Principle for Second Order Parabolic Equations.- 15.6. Control of Systems Governed by Evolution Inequalities.- 16. First Order Necessary Conditions.- 16.1. Statement of the Theorem.- 16.2. Proof of Theorem 16.1.- 16.2.1. "Algebraic" Transformation.- 16.2.2. Utilization of (16.11.).- 16.2.3. Proof of (16.12.).- 16.3. Remarks.- 17. Time Optimal Control.- 17.1. Problem Statement.- 17.2. Existence Theorem.- 17.3. Bang-Bang Theorem.- 18. Miscellaneous.- 18.1. Equations with Delay.- 18.1.1. Definition of the State.- 18.1.2. Control Problem.- 18.2. Spaces which are not Normable.- Notes.- IV Control of Systems Governed by Hyperbolic Equations or by Equations which are well Posed in the Petrowsky Sense.- 1. Second Order Evolution Equations.- 1.1. Notation and Hypotheses.- 1.2. Problem Statement. An Existence and Uniqueness Result.- 1.3. Proof of Uniqueness.- 1.4. Proof of Existence.- 1.5. Examples (I).- 1.6. Examples (II).- 1.7. Orientation.- 2. Control Problems.- 2.1. Notation. Immediate Properties.- 2.2. Case (2.5.).- 2.3. Case (2.6.).- 2.4. Case (2.7.).- 2.5. Case (2.8.).- 3. Transposition and Applications to Control.- 3.1. Transposition of Theorem 1.1.- 3.2. Application (I).- 3.3. Application (II).- 3.4. Application (III).- 4. Examples.- 4.1. Examples of Hyperbolic Problems. Distributed Control, Distributed Observation.- 4.2. Examples of Hyperbolic Systems. Distributed Control, Observation of the Final State.- 4.3. Petrowsky Type Equation. Distributed Control. Distributed Observation.- 4.4. Petrowsky Type Equation. Distributed Control. Observation of the Final State.- 4.5. Orientation.- 5. Decoupling.- 5.1. Problem Statement. Rewriting as a System of First Order Equations.- 5.2. Rewriting of the Set of Equations Determining the Optimal Control.- 5.3. Decoupling.- 5.4. Riccati Integro-differential Equation.- 5.5. Another Optimal Control Problem. Decoupling.- 6. Control via Initial Conditions. Estimation.- 6.1. Problem Statement.- 6.2. Coercivity of J(?).- 6.3. System of Equations Determining the Optimal Control.- 7. Boundary Control (I).- 7.1. Problem Statement.- 7.2. Definition of the State of the System.- 7.3. Distributed Observation.- 7.4. Boundary Observation.- 8. Boundary Control (II).- 8.1. Problem Statement.- 8.2. Control ? Regular.- 8.3. Examples.- 9. Parabolic-Hyperbolic Systems.- 9.1. Recapitulation of Some General Results.- 9.2. Complement.- 9.3. Control Problems.- 9.4. Example (I).- 9.5. Example (II).- 9.6. Decoupling.- 10. Existence Theorems.- 10.1. Orientation.- 10.2. Example. Introduction of a "Viscosity" Term.- 10.3. Time Optimal Control.- Notes.- V Regularization, Approximation and Penalization.- 1. Regularization.- 1.1. Parabolic Regularization.- 1.2. Application to Optimal Control.- 1.3. Application to Decoupling.- 1.4. Various Remarks.- 1.5. Regularization of the Control.- 2. Approximation in Terms of Systems of Cauchy-Kowaleska Type.- 2.1. Evolution Equation on a Variety.- 2.2. Approximation by a System of Cauchy-Kowaleska Type.- 2.3. Linearized Navier-Stokes Equation.- 3. Penalization.- Notes.

3,539 citations

01 Jan 1977
TL;DR: Spectral Methods Survey of Approximation Theory Review of Convergence Theory Algebraic Stability Spectral Methods Using Fourier Series Applications of algebraic stability analysis Constant Coefficient Hyperbolic Equations Time Differencing Efficient Implementation of Spectral Method as discussed by the authors.
Abstract: Spectral Methods Survey of Approximation Theory Review of Convergence Theory Algebraic Stability Spectral Methods Using Fourier Series Applications of Algebraic Stability Analysis Constant Coefficient Hyperbolic Equations Time Differencing Efficient Implementation of Spectral Methods Numerical Results for Hyperbolic Problems Advection-Diffusion Equation Models of Incompressible Fluid Dynamics Miscellaneous Applications of Spectral Methods Survey of Spectral Methods and Applications Properties of Chebyshev and Legendre Polynomial Expansions.

3,386 citations

Network Information
Related Topics (5)
Partial differential equation
70.8K papers, 1.6M citations
95% related
Differential equation
88K papers, 2M citations
92% related
Boundary value problem
145.3K papers, 2.7M citations
89% related
Bounded function
77.2K papers, 1.3M citations
89% related
Eigenvalues and eigenvectors
51.7K papers, 1.1M citations
87% related
No. of papers in the topic in previous years