scispace - formally typeset
Search or ask a question
Topic

Hyperintensity

About: Hyperintensity is a research topic. Over the lifetime, 7482 publications have been published within this topic receiving 288145 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The frequently observed "halo" of periventricular hyperintensity in Alzheimer's disease may be of diagnostic importance and high-signal abnormalities in specific cortical regions are likely to reflect disease processes localized to those structures.
Abstract: The type, frequency, and extent of MR signal abnormalities in Alzheimer's disease and normal aging are a subject of controversy. With a 1.5-MR unit we studied 12 Alzheimer patients, four subjects suffering from multiinfarct dementia and nine age-matched controls. Punctate or early confluent high-signal abnormalities in the deep white matter, noted in 60% of both Alzheimer patients and controls, were unrelated to the presence of hypertension or other vascular risk factors. A significant number of Alzheimer patients exhibited a more extensive smooth "halo" of periventricular hyperintensity when compared with controls (p = .024). Widespread deep white-matter hyperintensity (two patients) and extensive, irregular periventricular hyperintensity (three patients) were seen in multiinfarct dementia. Areas of high signal intensity affecting hippocampal and sylvian cortex were also present in five Alzheimer and two multiinfarct dementia patients, but absent in controls. Discrete, small foci of deep white-matter hyperintensity are not characteristic of Alzheimer's disease nor do they appear to imply a vascular cause for the dementing illness. The frequently observed "halo" of periventricular hyperintensity in Alzheimer's disease may be of diagnostic importance. High-signal abnormalities in specific cortical regions are likely to reflect disease processes localized to those structures.

3,573 citations

Journal Article
TL;DR: The type, frequency, and extent of MR signal abnormalities in Alzheimer9s disease and normal aging are a subject of controversy as mentioned in this paper, and the most commonly observed "halo" of periventricular hyperintensity in Alzheimer 9s disease may be of diagnostic importance.
Abstract: The type, frequency, and extent of MR signal abnormalities in Alzheimer9s disease and normal aging are a subject of controversy. With a 1.5-MR unit we studied 12 Alzheimer patients, four subjects suffering from multiinfarct dementia and nine age-matched controls. Punctate or early confluent high-signal abnormalities in the deep white matter, noted in 60% of both Alzheimer patients and controls, were unrelated to the presence of hypertension or other vascular risk factors. A significant number of Alzheimer patients exhibited a more extensive smooth “halo” of periventricular hyperintensity when compared with controls (p = .024). Widespread deep white-matter hyperintensity (two patients) and extensive, irregular periventricular hyperintensity (three patients) were seen in multiinfarct dementia. Areas of high signal intensity affecting hippocampal and sylvian cortex were also present in five Alzheimer and two multiinfarct dementia patients, but absent in controls. Discrete, small foci of deep white-matter hyperintensity are not characteristic of Alzheimer9s disease nor do they appear to imply a vascular cause for the dementing illness. The frequently observed “halo” of periventricular hyperintensity in Alzheimer9s disease may be of diagnostic importance. High-signal abnormalities in specific cortjcal regions are likely to reflect disease processes localized to those structures.

3,053 citations

Journal ArticleDOI
TL;DR: Small vessel disease has an important role in cerebrovascular disease and is a leading cause of cognitive decline and functional loss in the elderly and should be a main target for preventive and treatment strategies, but all types of presentation and complications should be taken into account.
Abstract: Summary The term cerebral small vessel disease refers to a group of pathological processes with various aetiologies that affect the small arteries, arterioles, venules, and capillaries of the brain. Age-related and hypertension-related small vessel diseases and cerebral amyloid angiopathy are the most common forms. The consequences of small vessel disease on the brain parenchyma are mainly lesions located in the subcortical structures such as lacunar infarcts, white matter lesions, large haemorrhages, and microbleeds. Because lacunar infarcts and white matter lesions are easily detected by neuroimaging, whereas small vessels are not, the term small vessel disease is frequently used to describe the parenchyma lesions rather than the underlying small vessel alterations. This classification, however, restricts the definition of small vessel disease to ischaemic lesions and might be misleading. Small vessel disease has an important role in cerebrovascular disease and is a leading cause of cognitive decline and functional loss in the elderly. Small vessel disease should be a main target for preventive and treatment strategies, but all types of presentation and complications should be taken into account.

2,330 citations

Journal ArticleDOI
26 Jul 2010-BMJ
TL;DR: White matter hyperintensities indicate an increased risk of cerebrovascular events when identified as part of diagnostic investigations, and support their use as an intermediate marker in a research setting.
Abstract: Objectives To review the evidence for an association of white matter hyperintensities with risk of stroke, cognitive decline, dementia, and death. Design Systematic review and meta-analysis. Data sources PubMed from 1966 to 23 November 2009. Study selection Prospective longitudinal studies that used magnetic resonance imaging and assessed the impact of white matter hyperintensities on risk of incident stroke, cognitive decline, dementia, and death, and, for the meta-analysis, studies that provided risk estimates for a categorical measure of white matter hyperintensities, assessing the impact of these lesions on risk of stroke, dementia, and death. Data extraction Population studied, duration of follow-up, method used to measure white matter hyperintensities, definition of the outcome, and measure of the association of white matter hyperintensities with the outcome. Data synthesis 46 longitudinal studies evaluated the association of white matter hyperintensities with risk of stroke (n=12), cognitive decline (n=19), dementia (n=17), and death (n=10). 22 studies could be included in a meta-analysis (nine of stroke, nine of dementia, eight of death). White matter hyperintensities were associated with an increased risk of stroke (hazard ratio 3.3, 95% confidence interval 2.6 to 4.4), dementia (1.9, 1.3 to 2.8), and death (2.0, 1.6 to 2.7). An association of white matter hyperintensities with a faster decline in global cognitive performance, executive function, and processing speed was also suggested. Conclusion White matter hyperintensities predict an increased risk of stroke, dementia, and death. Therefore white matter hyperintensities indicate an increased risk of cerebrovascular events when identified as part of diagnostic investigations, and support their use as an intermediate marker in a research setting. Their discovery should prompt detailed screening for risk factors of stroke and dementia.

1,842 citations

Journal ArticleDOI
15 Jul 1955-Science
TL;DR: ‘The uncritical citation of disputed data by a writer, whether it be deliberate or not, is a serious matter.
Abstract: Objectives To investigate whether longitudinal structural network efficiency is associated with cognitive decline and whether baseline network efficiency predicts mortality in cerebral small vessel disease (SVD). Methods A prospective, single-centre cohort consisting of 277 non-demented individuals with SVD was conducted. In 2011 and 2015, all participants were scanned with MRI and underwent neuropsychological assessment. We computed network properties using graph theory from probabilistic tractography and calculated changes in psychomotor speed and overall cognitive index. Multiple linear regressions were performed, while adjusting for potential confounders. We divided the group into mild-to-moderate white matter hyperintensities (WMH) and severe WMH group based on median split on WMH volume. Results The decline in global efficiency was significantly associated with a decline in psychomotor speed in the group with severe WMH (β=0.18, p=0.03) and a trend with change in cognitive index (β=0.14, p=0.068), which diminished after adjusting for imaging markers for SVD. Baseline global efficiency was associated with all-cause mortality (HR per decrease of 1 SD 0.43, 95% CI 0.23 to 0.80, p=0.008, C-statistic 0.76). Conclusion Disruption of the network efficiency, a metric assessing the efficiency of network information transfer, plays an important role in explaining cognitive decline in SVD, which was however not independent of imaging markers of SVD. Furthermore, baseline network efficiency predicts risk of mortality in SVD that may reflect the global health status of the brain in SVD. This emphasises the importance of structural network analysis in the context of SVD research and the use of network measures as surrogate markers in research setting.

1,822 citations


Network Information
Related Topics (5)
Cognitive decline
29.3K papers, 1.1M citations
88% related
Alzheimer's disease
21K papers, 1.7M citations
87% related
Magnetic resonance imaging
61K papers, 1.5M citations
87% related
Parkinson's disease
27.9K papers, 1.1M citations
85% related
Dementia
72.2K papers, 2.7M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023549
20221,020
2021578
2020468
2019474
2018398