scispace - formally typeset
Topic

Hyperspectral imaging

About: Hyperspectral imaging is a(n) research topic. Over the lifetime, 25695 publication(s) have been published within this topic receiving 433235 citation(s).

...read more

Papers
More filters

Journal ArticleDOI
Farid Melgani1, Lorenzo Bruzzone1Institutions (1)
TL;DR: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines by understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces and concludes that SVMs are a valid and effective alternative to conventional pattern recognition approaches.

...read more

Abstract: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs) First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces Then, we assess the effectiveness of SVMs with respect to conventional feature-reduction-based approaches and their performances in hypersubspaces of various dimensionalities To sustain such an analysis, the performances of SVMs are compared with those of two other nonparametric classifiers (ie, radial basis function neural networks and the K-nearest neighbor classifier) Finally, we study the potentially critical issue of applying binary SVMs to multiclass problems in hyperspectral data In particular, four different multiclass strategies are analyzed and compared: the one-against-all, the one-against-one, and two hierarchical tree-based strategies Different performance indicators have been used to support our experimental studies in a detailed and accurate way, ie, the classification accuracy, the computational time, the stability to parameter setting, and the complexity of the multiclass architecture The results obtained on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral dataset allow to conclude that, whatever the multiclass strategy adopted, SVMs are a valid and effective alternative to conventional pattern recognition approaches (feature-reduction procedures combined with a classification method) for the classification of hyperspectral remote sensing data

...read more

2,958 citations


13


Journal ArticleDOI
José M. P. Nascimento, J.M.B. Dias1Institutions (1)
TL;DR: A new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA), which competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.

...read more

Abstract: Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA). The algorithm exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. In a series of experiments using simulated and real data, the VCA algorithm competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.

...read more

2,090 citations


20


Journal ArticleDOI
TL;DR: This paper presents an overview of un Mixing methods from the time of Keshava and Mustard's unmixing tutorial to the present, including Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixed algorithms.

...read more

Abstract: Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.

...read more

1,979 citations


19


Journal Article
Nirmal Keshava1, John F. MustardInstitutions (1)
TL;DR: The outputs of spectral unmixing, endmember, and abundance estimates are important for identifying the material composition of mixtures and the applicability of models and techniques is highly dependent on the variety of circumstances and factors that give rise to mixed pixels.

...read more

Abstract: Spectral unmixing using hyperspectral data represents a significant step in the evolution of remote decompositional analysis that began with multispectral sensing. It is a consequence of collecting data in greater and greater quantities and the desire to extract more detailed information about the material composition of surfaces. Linear mixing is the key assumption that has permitted well-known algorithms to be adapted to the unmixing problem. In fact, the resemblance of the linear mixing model to system models in other areas has permitted a significant legacy of algorithms from a wide range of applications to be adapted to unmixing. However, it is still unclear whether the assumption of linearity is sufficient to model the mixing process in every application of interest. It is clear, however, that the applicability of models and techniques is highly dependent on the variety of circumstances and factors that give rise to mixed pixels. The outputs of spectral unmixing, endmember, and abundance estimates are important for identifying the material composition of mixtures.

...read more

1,825 citations


Posted Content
Abstract: Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.

...read more

1,808 citations


Network Information
Related Topics (5)
Multispectral image

13.4K papers, 247.4K citations

95% related
Full spectral imaging

1.7K papers, 34K citations

91% related
Endmember

1.9K papers, 48.2K citations

91% related
Multispectral pattern recognition

3K papers, 82K citations

90% related
Synthetic aperture radar

39.1K papers, 622.6K citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202237
20211,899
20202,084
20192,347
20182,213
20171,860

Top Attributes

Show by:

Topic's top 5 most impactful authors

Antonio Plaza

401 papers, 23.2K citations

Qian Du

306 papers, 12.6K citations

Jocelyn Chanussot

270 papers, 19.1K citations

Liangpei Zhang

226 papers, 9.1K citations

Jon Atli Benediktsson

166 papers, 14.9K citations