scispace - formally typeset
Search or ask a question
Topic

Hypothalamus

About: Hypothalamus is a research topic. Over the lifetime, 22301 publications have been published within this topic receiving 1085925 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Both neuronal and endocrine components of the hypothalamic-pituitary axis are critically dependent on the action of specific POU domain factors at a penultimate step in the sequential events that underlie the appearance of mature cellular phenotypes.
Abstract: Neurons comprising the endocrine hypothalamus are disposed in several nuclei that develop in tandem with their ultimate target the pituitary gland, and arise from a primordium in which three related class III POU domain factors, Brn-2, Brn-4, and Brn-1, are initially coexpressed. Subsequently, these factors exhibit stratified patterns of ontogenic expression, correlating with the appearance of distinct neuropeptides that define three major endocrine hypothalamic cell types. Strikingly, deletion of the Brn-2 genomic locus results in loss of endocrine hypothalamic nuclei and the posterior pituitary gland. Lack of Brn-2 does not affect initial hypothalamic developmental events, but instead results in a failure of differentiation to mature neurosecretory neurons of the paraventricular and supraoptic nuclei, characterized by an inability to activate genes encoding regulatory neuropeptides or to make correct axonal projections, with subsequent loss of these neurons. Thus, both neuronal and endocrine components of the hypothalamic-pituitary axis are critically dependent on the action of specific POU domain factors at a penultimate step in the sequential events that underlie the appearance of mature cellular phenotypes.

276 citations

Journal ArticleDOI
TL;DR: The topography and connections of Dl are remarkably similar to those of the hippocampus of tetrapods, whereas the topography of Dm is similar toThose of the amygdala.
Abstract: Biotinylated dextran amine and fluorescent carbocyanine dye (DiI) were used to examine connections of the lateral (Dl) and medial (Dm) divisions of the goldfish pallium. Besides numerous intrinsic telencephalic connections to Dl and Dm, major ascending projections to these pallial divisions arise in the preglomerular complex of the posterior tuberculum, rather than in the dorsal thalamus. The rostral subnucleus of the lateral preglomerular nucleus receives auditory input via the medial pretoral nucleus, lateral line input via the ventrolateral toral nucleus, and visual input via the optic tectum, and it projects to both Dl and Dm. The anterior preglomerular nucleus and caudal subnucleus of the lateral preglomerular nucleus receive auditory input via the central toral nucleus and project to Dm. This pallial division also receives chemosensory information via the medial preglomerular nucleus. The central posterior (CP) nucleus, which receives both auditory and visual inputs, also projects to Dm and is the only dorsal thalamic nucleus projecting to the pallium. Thus, both Dl and Dm clearly receive multisensory inputs. Major projections of CP and projections of all other dorsal thalamic nuclei are to the subpallium, however. Descending projections of Dl are primarily to the preoptic area and the caudal hypothalamus, whereas descending projections of Dm are more extensive and particularly heavy to the anterior tuber and nucleus diffusus of the hypothalamus. The topography and connections of Dl are remarkably similar to those of the hippocampus of tetrapods, whereas the topography and connections of Dm are similar to those of the amygdala.

276 citations

Journal ArticleDOI
TL;DR: The findings establish the distribution of Sirt1 mRNA throughout the neuraxis and suggest a previously unrecognized role of brain SIRT1 in regulating energy homeostasis, as well as establishing the role of hypothalamic-specific, fasting-induced SIRT 1 regulation in leptin-deficient, obese mice.
Abstract: SIRT1 is a nicotinamide adenosine dinucleotide-dependent deacetylase that orchestrates key metabolic adaptations to nutrient deprivation in peripheral tissues. SIRT1 is induced also in the brain by reduced energy intake. However, very little is known about SIRT1 distribution and the biochemical phenotypes of SIRT1-expressing cells in the neuraxis. Unknown are also the brain sites in which SIRT1 is regulated by energy availability and whether these regulations are altered in a genetic model of obesity. To address these issues, we performed in situ hybridization histochemistry analyses and found that Sirt1 mRNA is highly expressed in metabolically relevant sites. These include, but are not limited to, the hypothalamic arcuate, ventromedial, dorsomedial, and paraventricular nuclei and the area postrema and the nucleus of the solitary tract in the hindbrain. Of note, our single-cell reverse transcription-PCR analyses revealed that Sirt1 mRNA is expressed in pro-opiomelanocortin neurons that are critical for normal body weight and glucose homeostasis. We also found that SIRT1 protein levels are restrictedly increased in the hypothalamus in the fasted brain. Of note, we found that this hypothalamic-specific, fasting-induced SIRT1 regulation is altered in leptin-deficient, obese mice. Collectively, our findings establish the distribution of Sirt1 mRNA throughout the neuraxis and suggest a previously unrecognized role of brain SIRT1 in regulating energy homeostasis.

276 citations

Journal ArticleDOI
TL;DR: Topographically distinct, but often overlapping, systems of neurons and fibres displaying immunoreactivity (ir) related to a range of neuropeptides were found in most brain areas.
Abstract: The comparative distribution of peptidergic neural systems in the brain of the euryhaline, viviparous teleost Poecilia latipinna (green molly) was examined by immunohistochemistry. Topographically distinct, but often overlapping, systems of neurons and fibres displaying immunoreactivity (ir) related to a range of neuropeptides were found in most brain areas. Neurosecretory and hypophysiotrophic hormones were localized to specific groups of neurons mostly within the preoptic and tuberal hypothalamus, giving fibre projections to the neurohypophysis, ventral telencephalon, thalamus, and brain stem. Separate vasotocin (AVT)-ir and isotocin (IST)-ir cells were located in the nucleus preopticus (nPO), but many AVT-ir nPO neurons also displayed growth hormone-releasing factor (GRF)-like-ir, and in some animals corticotrophin-releasing factor (CRF)-like-ir. The main group of CRF-ir neurons was located in the nucleus recessus anterioris, where coexistence with galanin (GAL) was observed in some cells. Enkephalin (ENK)-like-ir was occasionally present in a few IST-ir cells of the nPO and was also found in small neurons in the posterior tuberal hypothalamus and in a cluster of large cells in the dorsal midbrain tegmentum. Thyrotrophin-releasing hormone (TRH)-ir cells were found near the rostromedial tip of the nucleus recessus lateralis. Gonadotrophin-releasing hormone (GnRH)-ir cells were present in the nucleus olfactoretinalis, ventral telencephalon, preoptic area, and dorsal midbrain tegmentum. Molluscan cardioexcitatory peptide (FMRF-amide)-ir was colocalized with GnRH-ir in the ganglion cells and central projections of the nervus terminalis. Melanin-concentrating hormone (MCH)-ir neurons were restricted to the tuberal hypothalamus, mostly within the nucleus lateralis tuberis pars lateralis, and somatostatin (SRIF)-ir neurons were numerous throughout the periventricular areas of the diencephalon. A further group of SRIF-ir neurons extending from the ventral telencephalon into the dorsal telencephalon pars centralis also contained neuropeptide Y (NPY)-, peptide YY (PYY)-, and NPY flanking peptide (PSW)-like-ir. These immunoreactivities were, however, also observed in non-SRIF-ir cells and fibres, particularly in the mesencephalon. Calcitonin gene-related peptide (CGRP)-like-ir had a characteristic distribution in cells grouped in the isthmal region and fibre tracts running forward into the hypothalamus, most strikingly into the inferior lobes. Antisera to cholecystokinin (CCK) and neurokinin A (NK) or substance P (SP) stained very extensive, separate systems throughout the brain, with cells most consistently seen in the ventral telencephalon and periventricular hypothalamus. Broadly similar, but much more restricted, distributions of cells and fibres were seen with antisera to neurotensin (NT) and vasoactive intestinal peptide (VIP).(ABSTRACT TRUNCATED AT 400 WORDS)

275 citations

Journal ArticleDOI
TL;DR: It may be concluded that the regulatory role of endogenous oxytocin in the hypothalamus on the milk-ejection reflex could result from its local release in the extracellular spaces of magnocellular nuclei.
Abstract: The release of endogenous oxytocin and vasopressin by rat paraventricular and supraoptic nuclei in vitro during a 10-min period, 30 min after beginning the incubation, was measured radioimmunologically. Mean basal hormone release per 10 min and per pair of nuclei was: 128.4 +/- 12.4 (S.E.M.) pg vasopressin (n = 15) and 39.0 +/- 3.0 pg oxytocin (n = 66) for supraoptic nuclei from male rats; 273.9 +/- 42.6 pg vasopressin (n = 11) and 34.2 +/- 3.5 pg oxytocin (n = 15) for supraoptic nuclei from lactating rats; 70.0 +/- 8.6 pg vasopressin (n = 52) and 21.8 +/- 1.3 pg oxytocin (n = 68) for paraventricular nuclei from male rats; 59.1 +/- 8.6 pg vasopressin (n = 10) and 27.0 +/- 4.6 pg oxytocin (n = 16) for paraventricular nuclei from lactating rats. In male and lactating rats, both nuclei contained and released more vasopressin than oxytocin. For oxytocin alone, the paraventricular nucleus of male rats contained and released significantly less hormone than the supraoptic nucleus. This difference was not apparent in lactating rats. For vasopressin alone, the paraventricular nucleus contained and released significantly less hormone than the supraoptic nucleus in both male and lactating rats. When the hormone released was calculated as a percentage of the total tissue content the release was about 0.9% for oxytocin from both nuclei in male and lactating rats and also for vasopressin in lactating rats, but was only about 0.5% for vasopressin from both nuclei in male rats. The influence of oxytocin and analogues of oxytocin (including one antagonist) upon the release of oxytocin and vasopressin was studied. Adding oxytocin to the incubation medium (0.4-4 nmol/1 solution) induced a dose-dependent rise in oxytocin release from both nuclei of male or lactating rats. A 4 nmol/l solution of isotocin had a similar effect to a 0.4 nmol/l solution of oxytocin, but arginine-vasopressin never affected basal release of oxytocin. In no case was vasopressin release modified. An oxytocin antagonist (1 mumol/l solution) significantly reduced basal oxytocin release and blocked the stimulatory effect normally induced by exogenous oxytocin, as did gallopamil hydrochloride (D600, 10 mumol/l solution), a Ca2+ channel blocker, or incubation in a Ca2+-free medium. These findings are discussed in relation to the literature on the central effects of neurohypophysial peptides. It may be concluded that the regulatory role of endogenous oxytocin in the hypothalamus on the milk-ejection reflex could result from its local release in the extracellular spaces of magnocellular nuclei.

275 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
90% related
Stimulation
40.1K papers, 1.4M citations
90% related
Dopaminergic
29K papers, 1.4M citations
89% related
Hippocampus
34.9K papers, 1.9M citations
88% related
Hippocampal formation
30.6K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023425
2022950
2021295
2020316
2019326
2018289