scispace - formally typeset
Search or ask a question
Topic

Hypothalamus

About: Hypothalamus is a research topic. Over the lifetime, 22301 publications have been published within this topic receiving 1085925 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors showed that the daily rise in plasma glucose concentrations is caused by an SCN-mediated withdrawal of GABAergic inputs to sympathetic preautonomic neurons in the paraventricular nucleus of the hypothalamus, resulting in an increased hepatic glucose production.
Abstract: Daily peak plasma glucose concentrations are attained shortly before awakening. Previous experiments indicated an important role for the biological clock, located in the suprachiasmatic nuclei (SCN), in the genesis of this anticipatory rise in plasma glucose concentrations by controlling hepatic glucose production. Here, we show that stimulation of NMDA receptors, or blockade of GABA receptors in the paraventricular nucleus of the hypothalamus (PVN) of conscious rats, caused a pronounced increase in plasma glucose concentrations. The local administration of TTX in brain areas afferent to the PVN revealed that an important part of the inhibitory inputs to the PVN was derived from the SCN. Using a transneuronal viral-tracing technique, we showed that the SCN is connected to the liver via both branches of the autonomic nervous system (ANS). The combination of a blockade of GABA receptors in the PVN with selective removal of either the sympathetic or parasympathetic branch of the hepatic ANS innervation showed that hyperglycemia produced by PVN stimulation was primarily attributable to an activation of the sympathetic input to the liver. We propose that the daily rise in plasma glucose concentrations is caused by an SCN-mediated withdrawal of GABAergic inputs to sympathetic preautonomic neurons in the PVN, resulting in an increased hepatic glucose production. The remarkable resemblance of the presently proposed control mechanism to that described previously for the control of daily melatonin rhythm suggests that the GABAergic control of sympathetic preautonomic neurons in the PVN is an important pathway for the SCN to control peripheral physiology.

239 citations

Journal ArticleDOI
TL;DR: CRH in the BNST and the CEA may share some common functions in neuroendocrine and behavioral changes, but that mechanisms of CRH synthesis or its releasing sites may be different in the NST and CEA.

239 citations

Journal ArticleDOI
TL;DR: It has become apparent that the sympathetic system is a key regulator of leptin production in white adipose tissue as well, and the dysregulation of energy balance leading to obesity may partly involve a decrease in leptin sensitivity, or the leptin system may be set to have maximal effects at low leptin levels.
Abstract: Leptin is secreted primarily from white adipose tissue and stimulates long-form OB-Rb receptors in the hypothalamus to decrease food intake and increase energy expenditure. A variety of neuropeptides are involved in these responses, including neuropeptide Y, agouti-related protein, the prepro-melanocortin system and cocaine- and amphetamine-regulated transcript. OB-Rb receptors (and other receptor isoforms) are also found in peripheral tissues. Leptin is now known to have a wide range of peripheral actions and is involved in activating the immune system, haematopoiesis, angiogenesis and as a growth factor, as well as being a regulator of many cellular functions. The identification of leptin has led to reappraisal of the role of white adipose tissue from being an organ concerned primarily with energy storage as fat to an understanding that it is also a major endocrine and secretory organ. While the importance of the sympathetic nervous system in mobilising fatty acids from adipose tissue has long been known, it has become apparent that the sympathetic system is a key regulator of leptin production in white adipose tissue as well. Sympathomimetic amines and cold exposure or fasting (which lead to sympathetic stimulation of white fat), decrease leptin gene expression in the tissue and leptin production. On the other hand, sympathetic blockade often increases circulating leptin and leptin gene expression, and it is possible that the sympathetic system has a tonic inhibitory action on leptin synthesis. Apart from the few instances where leptin is absent, leptin levels are increased in obesity, while the sympathetic sensitivity of adipose tissue is reduced, consistent with the high leptin levels that are seen. The dysregulation of energy balance leading to obesity may partly involve a decrease in leptin sensitivity, or the leptin system may be set to have maximal effects at low leptin levels.

239 citations

Journal ArticleDOI
TL;DR: F afferents to the nucleus paragigantocellularis were identified in the rat by means of the retrograde tracers wheat germ agglutinin‐conjugated horseradish peroxidase or Fluoro‐Gold.
Abstract: The nucleus paragigantocellularis in the ventrolateral medulla has been implicated in cardiovascular, pain, and analgesic functions; and it has also been found to be a major afferent to the pontine nucleus locus coeruleus. In the present study, afferents to the nucleus paragigantocellularis were identified in the rat by means of the retrograde tracers wheat germ agglutinin-conjugated horseradish peroxidase or Fluoro-Gold. Projections to the nucleus paragigantocellularis arise from a wide variety of nuclei with autonomic, visceral, and sensory-related functions. Major afferents with consistent and robust retrograde labeling include most laminae of the spinal cord, the caudal lateral medulla, the contralateral paragigantocellularis, the nucleus of the solitary tract, the A1 area, the lateral parabrachialis, the Kolliker-Fuse nucleus, the periaqueductal gray, and a preoculomotor nucleus in the ventral central gray, the supraoculomotor nucleus. Other notable afferents, seen only after large caudal injections into the nucleus paragigantocellularis, include the lateral hypothalamus, the paraventricular nucleus of the hypothalamus, and the medial prefrontal cortex. Minor afferents include the gigantocellular nucleus, the area postrema, the caudal raphe groups, the inferior colliculus, the A5 area, and the locus coeruleus. The projection from the supraoculomotor nucleus, not previously reported as an afferent to the ventrolateral medulla, was confirmed with anterograde tracing by means of Phaseolus vulgaris-leucoagglutinin. Iontophoretic deposits of Phaseolus vulgaris-leucoagglutinin into the nucleus of the solitary tract (commissuralis level) or into the periaqueductal gray also yielded terminal fiber labeling in the nucleus paragigantocellularis. Fibers from the supraoculomotor nucleus and the nucleus of the solitary tract were densest in the lateral aspect of the nucleus paragigantocellularis (corresponding to the rostroventrolateral reticular nucleus), while fibers from the periaqueductal gray were more medially located. Previous studies have defined inputs to the rostral ventrolateral medulla from the cochlear nucleus as well as from the colliculi. In the present study, deposits of wheat germ agglutinin-conjugated horseradish peroxidase or Phaseolus vulgaris-leucoagglutinin into the cochlear nucleus or the superior colliculus yielded only sparse anterograde labeling in the nucleus paragigantocellularis, but heavily labeled adjacent areas. The inferior collicular injections yielded strong but restricted anterograde labeling in the rostromedial paragigantocellularis, medial to the facial nucleus. These results indicate that the paragigantocellularis area receives inputs from diverse brain structures. Neurons in the nucleus paragigantocellularis afferent to the locus coeruleus, being distributed throughout this region, may provide a channel where several types of information are integrated and transmitted to the extensive locus coeruleus noradrenergic efferent network. Further studies are needed to determine which afferents to, and functions of, the nucleus paragigantocellularis are predominant in its regulation of the locus coeruleus.

239 citations

Journal ArticleDOI
TL;DR: The in vivo recovery in blood of approximately 65% determined using both radiolabeled and endogenous oxytocin provides a rough estimate to assess nonapeptide concentrations in plasma from 30-min or even 10-min blood microdialysis data.
Abstract: Simultaneous microdialysis in blood and brain has been used to monitor the release of both oxytocin and vasopressin into the systemic circulation (jugular vein/right atrium) and within the hypothalamic supraoptic nucleus of rats. Both home-made probes for blood and brain microdialysis revealed detectable nonapeptide concentrations under basal conditions and differential responses to a variety of stimuli. In urethane-anesthetized male rats, bilateral stimulation of the supraoptic nucleus by microdialyzing hypertonic medium (1 M NaCl) not only significantly increased the intranuclear release of both oxytocin and vasopressin (p < 0.05), but also their release from the neurohypophysis into blood (p < 0.05). In poststimulation microdialysates sampled from blood, the nonapeptides reached basal levels again, whereas intranuclear levels were further elevated. Intraperitoneal injection of hypertonic saline, on the other hand, resulted not only in the well-known increased peripheral release of oxytocin and vasopressin (p < 0.01 each), but also in a delayed increase in intranuclear oxytocin (p < 0.05). In contrast, intranuclear vasopressin release failed to change within the 90-min period following osmotic stimulation. In conscious lactating rats, suckling increased oxytocin contents in microdialysates sampled simultaneously in blood and the supraoptic nucleus (p < 0.05 each) further validating the microdialysis techniques used. The in vivo recovery in blood of approximately 65% determined using both radiolabeled and endogenous oxytocin provides a rough estimate to assess nonapeptide concentrations in plasma from 30-min or even 10-min blood microdialysis data.(ABSTRACT TRUNCATED AT 250 WORDS)

238 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
90% related
Stimulation
40.1K papers, 1.4M citations
90% related
Dopaminergic
29K papers, 1.4M citations
89% related
Hippocampus
34.9K papers, 1.9M citations
88% related
Hippocampal formation
30.6K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023425
2022950
2021295
2020316
2019326
2018289