scispace - formally typeset
Search or ask a question
Topic

Hypothalamus

About: Hypothalamus is a research topic. Over the lifetime, 22301 publications have been published within this topic receiving 1085925 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Data demonstrate that apelin acts as a potent diuretic neuropeptide counteracting AVP actions through inhibition of AVP neuron activity and AVP release, indicating that AVP and apelin are conversely regulated to facilitate systemic AVPrelease and suppress diuresis.
Abstract: Apelin, a recently isolated neuropeptide that is expressed in the supraoptic and the paraventricular nuclei, acts on specific receptors located on vasopressinergic neurons. The increased phasic pattern of these neurons facilitates sustained antidiuresis during dehydration or lactation. Here, we investigated whether apelin interacts with arginine vasopressin (AVP) to maintain body fluid homeostasis. We first characterized the predominant molecular forms of endogenous hypothalamic and plasma apelin as corresponding to apelin 13 and, to a lesser extent, to apelin 17. We then demonstrated that, in lactating rats, apelin was colocalized with AVP in supraoptic nucleus magnocellular neurons and given intracerebroventricularly inhibited the phasic electrical activity of AVP neurons. In lactating mice, intracerebroventricular administration of apelin 17 reduced plasma AVP levels and increased diuresis. Moreover, water deprivation, which increases systemic AVP release and causes depletion of hypothalamic AVP stores, decreased plasma apelin concentrations and induced hypothalamic accumulation of the peptide, indicating that AVP and apelin are conversely regulated to facilitate systemic AVP release and suppress diuresis. Opposite effects of AVP and apelin are likely to occur at the hypothalamic level through autocrine modulation of the phasic electrical activity of AVP neurons. Altogether, these data demonstrate that apelin acts as a potent diuretic neuropeptide counteracting AVP actions through inhibition of AVP neuron activity and AVP release. The coexistence of apelin and AVP in magnocellular neurons, their opposite biological effects, and regulation are likely to play a key role for maintaining body fluid homeostasis.

334 citations

Journal ArticleDOI
TL;DR: E2 regulation of the VMH AMPK-SNS-BAT axis is an important determinant of energy balance and dysregulation in this axis may account for the common changes in energy homeostasis and obesity linked to dysfunction of the female gonadal axis.

334 citations

Journal ArticleDOI
TL;DR: Repetitive stress-induced reduction of BDNF may partly contribute to the neuronal atrophy/death and reduction of hippocampal volume observed both in animals and humans suffering chronic stress and/or depression.

333 citations

Journal ArticleDOI
02 Oct 1987-Science
TL;DR: A nearly twofold increase in proTRH mRNA was observed in hypothyroid animals; this increase could be obliterated by levothyroxine treatment, suggesting an inverse relation between circulating thyroid hormone and pro TRH mRNA.
Abstract: Thyroid hormone is important in the regulation of synthesis and secretion of thyroid-stimulating hormone (TSH) in the anterior pituitary, but its role in the control of hypothalamic thyrotropin-releasing hormone (TRH) is controversial. To determine whether thyroid hormone regulates the function of TRH in the hypothalamic tuberoinfundibular system, a study was made of the effect of hypothyroidism on thyrotropin-releasing hormone messenger RNA (proTRH mRNA) and TRH prohormone in the rat paraventricular nucleus. Extracts of rat hypothalamic paraventricular nucleus were examined by quantitative Northern blot analysis, and coronal sections of rat brain were examined by in situ hybridization histochemistry and immunocytochemistry. A nearly twofold increase in proTRH mRNA was observed in hypothyroid animals; this increase could be obliterated by levothyroxine treatment, suggesting an inverse relation between circulating thyroid hormone and proTRH mRNA. In situ hybridization showed that this response occurred exclusively in medial parvocellular neurons of the paraventricular nucleus. A simultaneous increase in proTRH mRNA and immunoreactive TRH prohormone in this region suggests that hypothyroidism induces both transcription and translation of the TRH prohormone in the paraventricular nucleus.

332 citations

Journal ArticleDOI
TL;DR: It is demonstrated that 5 cytoarchitectonically distinct cell groups in the hypothalamus contribute to the spinal projection and that each has its own predominant chemical types.
Abstract: The hypothalamus provides a major projection to the spinal cord that innervates primarily lamina I of the dorsal horn and the sympathetic and parasympathetic preganglionic cell columns. We have examined the chemical organization of the neurons that contribute to this pathway by using combined retrograde transport of fluorescent dyes and immunohistochemistry for 15 different putative neurotransmitters or their synthetic enzymes. Our results demonstrate that 5 cytoarchitectonically distinct cell groups in the hypothalamus contribute to the spinal projection and that each has its own predominant chemical types. In the paraventricular nucleus, substantial numbers of hypothalamo-spinal neurons stain with antisera against arginine vasopressin (25-35%), oxytocin (20-25%), and metenkephalin (10%). About 25% of the neurons with spinal projections in the retrochiasmatic area stain with an antiserum against α-melanocyte-stimulating hormone. Nearly 100% of the hypothalamo-spinal neurons in the tuberal lateral hypothalamic area stain with this same antiserum, but these cells do not stain for other proopiomelanocortin-derived peptides, and so probably contain a cross-reacting peptide. This population must be distinguished from an adjacent cell group, in the perifornical region, where many spinal projection neurons stain with antisera against dynorphin (25%) or atrial natriuretic peptide (20%). Finally, in the dorsal hypothalamic area as many as 55-75% of the neurons with spinal projections are dopaminergic, on the basis of their staining with an antiserum against tyrosine hydroxylase. These 5 neurochemically distinct projections from the hypothalamus to the spinal cord are discussed in the context of their possible functional significance.

332 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
90% related
Stimulation
40.1K papers, 1.4M citations
90% related
Dopaminergic
29K papers, 1.4M citations
89% related
Hippocampus
34.9K papers, 1.9M citations
88% related
Hippocampal formation
30.6K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023425
2022950
2021295
2020316
2019326
2018289