scispace - formally typeset
Search or ask a question
Topic

Hypothalamus

About: Hypothalamus is a research topic. Over the lifetime, 22301 publications have been published within this topic receiving 1085925 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Dual label immunohistochemistry/in situ hybridization and whole-cell patch-clamp electrophysiology data suggest that cross talk between leptin and insulin occurs within a network of cells rather than within individual POMC neurons.
Abstract: Acute leptin administration results in a depolarization and concomitant increase in the firing rate of a subpopulation of arcuate proopiomelanocortin (POMC) cells. This rapid activation of POMC cells has been implicated as a cellular correlate of leptin effects on energy balance. In contrast to leptin, insulin inhibits the activity of some POMC neurons. Several studies have described a "cross talk" between leptin and insulin within the mediobasal hypothalamus via the intracellular enzyme, phosphoinositol-3-kinase (PI3K). Interestingly, both insulin and leptin regulate POMC cellular activity by activation of PI3K; however, it is unclear whether leptin and insulin effects are observed in similar or distinct populations of POMC cells. We therefore used dual label immunohistochemistry/in situ hybridization and whole-cell patch-clamp electrophysiology to map insulin and leptin responsive arcuate POMC neurons. Leptin-induced Fos activity within arcuate POMC neurons was localized separate from POMC neurons that express insulin receptor. Moreover, acute responses to leptin and insulin were largely segregated in distinct subpopulations of POMC cells. Collectively, these data suggest that cross talk between leptin and insulin occurs within a network of cells rather than within individual POMC neurons.

316 citations

Journal ArticleDOI
TL;DR: Treatment with biosynthetic GH has been shown to improve the body composition and the metabolic efficacy of lean body mass in obese patients undergoing therapeutic severe caloric restriction and GHRPs might therefore have a place in the therapy of obesity.
Abstract: Growth hormone (GH) secretion, either spontaneous or evoked by provocative stimuli, is markedly blunted in obesity. In fact obese patients display, compared to normal weight subjects, a reduced half-life, frequency of secretory episodes and daily production rate of the hormone. Furthermore, in these patients GH secretion is impaired in response to all traditional pharmacological stimuli acting at the hypothalamus (insulin-induced hypoglycaemia, arginine, galanin, L-dopa, clonidine, acute glucocorticoid administration) and to direct somatotrope stimulation by exogenous growth hormone releasing hormone (GHRH). Compounds thought to inhibit hypothalamic somatostatin (SRIH) release (pyridostigmine, arginine, galanin, atenolol) consistently improve, though do not normalize, the somatotropin response to GHRH in obesity. The synthetic growth hormone releasing peptides (GHRPs) GHRP-6 and hexarelin elicit in obese patients GH responses greater than those evoked by GHRH, but still lower than those observed in lean subjects. The combined administration of GHRH and GHRP-6 represents the most powerful GH releasing stimulus known in obesity, but once again it is less effective in these patients than in lean subjects. As for the peripheral limb of the GH-insulin-like growth factor I (IGF-I) axis, high free IGF-I, low IGF-binding proteins 1 (IGFBP-1) and 2 (IGFBP-2), normal or high IGFBP-3 and increased GH binding protein (GHBP) circulating levels have been described in obesity. Recent evidence suggests that leptin, the product of adipocyte specific ob gene, exerts a stimulating effect on GH release in rodents; should the same hold true in man, the coexistence of high leptin and low GH serum levels in human obesity would fit in well with the concept of a leptin resistance in this condition. Concerning the influence of metabolic and nutritional factors, an impaired somatotropin response to hypoglycaemia and a failure of glucose load to inhibit spontaneous and stimulated GH release are well documented in obese patients; furthermore, drugs able to block lipolysis and thus to lower serum free fatty acids (NEFA) significantly improve somatotropin secretion in obesity. Caloric restriction and weight loss are followed by the restoration of a normal spontaneous and stimulated GH release. On the whole, hypothalamic, pituitary and peripheral factors appear to be involved in the GH hyposecretion of obesity. A SRIH hypertone, a GHRH deficiency or a functional failure of the somatotrope have been proposed as contributing factors. A lack of the putative endogenous ligand for GHRP receptors is another challenging hypothesis. On the peripheral side, the elevated plasma levels of NEFA and free IGF-I may play a major role. Whatever the cause, the defect of GH secretion in obesity appears to be of secondary, probably adaptive, nature since it is completely reversed by the normalization of body weight. In spite of this, treatment with biosynthetic GH has been shown to improve the body composition and the metabolic efficacy of lean body mass in obese patients undergoing therapeutic severe caloric restriction. GH and conceivably GHRPs might therefore have a place in the therapy of obesity.

315 citations

Journal ArticleDOI
TL;DR: The distribution and type of leptin receptor mRNA isoforms in brain microvessels are consistent with the possibility that receptor-mediated transport of leptin across the blood-brain barrier is mediated by the short leptin receptor isoform.
Abstract: Leptin acts on specific brain regions to affect body weight regulation. As leptin is made by white adipose tissue, it is thought that leptin must cross the blood-brain barrier or the blood-cerebrospinal fluid barrier to reach key sites of action within the brain. High expression of a short form leptin receptor has been reported in the choroid plexus. However, whether one or more of the known leptin receptor isoforms is expressed in brain capillaries is unknown. To identify and quantitate leptin receptor isoforms in rat brain microvessels, we applied quantitative RT-PCR to RNA from purified rat brain microvessels in parallel with in situ hybridization. The results show that the amount of short form leptin receptor messenger RNA (mRNA) in brain microvessels is extremely high, exceeding that in choroid plexus. In contrast, low levels of this mRNA were detected in the cerebellum, hypothalamus, and meninges. The long form leptin receptor mRNA is only present at low levels in the microvessels, but surprisingly, its level in cerebellum is 5 times higher than that in the hypothalamus. In situ hybridization experiments confirmed strong expression of short leptin receptors in microvessels, choroid plexus, and leptomeninges. The distribution and type of leptin receptor mRNA isoforms in brain microvessels are consistent with the possibility that receptor-mediated transport of leptin across the blood-brain barrier is mediated by the short leptin receptor isoform.

315 citations

Journal ArticleDOI
21 Mar 1980-Science
TL;DR: The findings permit the conclusion that neither adenohypophysial nor ovarian competence is limiting in the initiation of puberty and suggest that this process depends on the maturation of the neuroendocrine control system that directs the pulsatile secretion of gonadotropin-releasing hormone from the hypothalamus.
Abstract: Normal ovulatory menstrual cycles were initiated in prepubertal female rhesus monkeys by the infusion of gonadotropin-releasing hormone for 6 minutes once every hou;. When this regimen was discontinued, the animals promptly reverted to an immature state. These findings permit the conclusion that neither adenohypophysial nor ovarian competence is limiting in the initiation of puberty and suggest that this process depends on the maturation of the neuroendocrine control system that directs the pulsatile secretion of gonadotropin-releasing hormone from the hypothalamus.

315 citations

Journal ArticleDOI
TL;DR: Early postnatal handling appears to influence the development of the glucocorticoid receptor system in the hippocampus and frontal cortex in Norway rat pups, providing a possible mechanism for some of the previously reported effects of early handling on theDevelopment of the pituitary-adrenal response to stress.
Abstract: Norway rat pups were either handled (H) or undisturbed (nonhandled, NH) in the period between birth and weaning on Day 21. Following weaning, half of the animals in each group were housed socially (Soc), and half were housed in isolation (Isol). At 120-150 days of age, all animals were sacrificed, and the following regions were dissected and frozen at -70 °C until the time of assay: frontal cortex, hippocampus, hypothalamus, amygdala, septum, and pituitary. [3H]Dexamethasone (3H Dex) binding in each region was examined by an in vitro, cytosol, receptor assay. 3H Dex binding was significantly higher in the hippocampus of both H-Soc and H-Isol than in NH groups. In the frontal cortex, 3H Dex binding was higher in the H-Soc animals than in the H-Isol and NH-Isol animals. There were no significant handling or housing effects found in the amygdala, hypothalamus, septum, or pituitary. Thus, early postnatal handling appears to influence the development of the glucocorticoid receptor system in the hippocampus and frontal cortex. These results are discussed as providing a possible mechanism for some of the previously reported effects of early handling on the development of the pituitary-adrenal response to stress.

314 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
90% related
Stimulation
40.1K papers, 1.4M citations
90% related
Dopaminergic
29K papers, 1.4M citations
89% related
Hippocampus
34.9K papers, 1.9M citations
88% related
Hippocampal formation
30.6K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023425
2022950
2021295
2020316
2019326
2018289