scispace - formally typeset
Search or ask a question
Topic

Hypoventilation

About: Hypoventilation is a research topic. Over the lifetime, 1772 publications have been published within this topic receiving 40799 citations. The topic is also known as: respiratory depression.


Papers
More filters
Journal ArticleDOI
TL;DR: A family transmission study has shown that the risk of developing an ANSD symptom including CCHS, regarded as the most severe expression of ANS imbalance, mainly depends on the genotype at a major locus, while significant residual variants could be due to additional minor genes, modifying loci effects or environmental factors.
Abstract: Congenital Central Hypoventilation syndrome (CCHS (MIM 209880)) is a rare disorder, with fewer than 200 patients currently reported worldwide, characterised by absence of adequate autonomic control of respiration with decreased sensitivity to hypercapnia and hypoxia, in the absence of neuromuscular or lung disease, or an identifiable brain stem lesion.1 Children with CCHS show an adequate ventilation while awake but hypoventilate during sleep. More severely affected children hypoventilate both when awake and during sleep.1 CCHS has been reported in association with several disorders, among which aganglionic megacolon (Hirschsprung disease, HSCR) and tumours of neural crest origin, reflecting a common molecular pathogenesis sustained by defects of one or more genes that control the correct development of neural crest derived cell lineages.1–3 A genetic aetiology has long been hypothesised for CCHS based on recurrence reported in siblings, in half siblings and in affected children born to women with CCHS.2–6 More recently, a generalised autonomic nervous system (ANS) imbalance has been observed among children with CCHS and an increased incidence of ANS dysfunctions (ANSD) reported among relatives of 56 patients with CCHS, as against relatives of 56 matched controls.7 A family transmission study has shown that the risk of developing an ANSD symptom including CCHS, regarded as the most severe expression of ANS imbalance, mainly depends on the genotype at a major locus, while significant residual variants could be due to additional minor genes, modifying loci effects or environmental factors.8 Genes involved in the ANS development, like the RET proto-oncogene, its ligand GDNF , the Endothelin 3 gene, the Brain Derived Neurotrophic Factor ( BDNF ) and the RNX genes, have been tested and a few mutations found, showing no cosegregation with the disease phenotype in CCHS families.9–13 The PHOX2B gene encodes a 314 amino acids …

263 citations

Journal ArticleDOI
01 Nov 1978-Medicine
TL;DR: It is postulate that a developmental abnormality in serotonergic neurons is responsible for this new syndrome, and minute ventilation was lower in quiet than in REM sleep and lower in both states of sleep than in wakefulness.

263 citations

Journal ArticleDOI
01 Jan 1990-Chest
TL;DR: All 34 patients who were not dependent on ventilatory support 24 hours a day demonstrated significant improvement and in most cases normalization of ABG when off aid, and NIPPV can be an effective alternative to TIPPV, body ventilators, or oxygen therapy.

250 citations

Journal ArticleDOI
TL;DR: It is suggested that these hypoxaemic episodes result from a combination of hypoventilation and impaired ventilation/ perfusion relationships and that these episodes may contribute to the development of the pulmonary hypertension and secondary polycythaemia which characterises "blue and bloated" patients.

247 citations

Journal ArticleDOI
TL;DR: The results of this controlled effectiveness trial suggest that microstream capnography improves the current standard of care for monitoring sedated children by allowing early detection of respiratory compromise, prompting intervention to minimize hypoxemia.
Abstract: BACKGROUND. Investigative efforts to improve monitoring during sedation for patients of all ages are part of a national agenda for patient safety. According to the Institute of Medicine, recent technological advances in patient monitoring have contributed to substantially decreased mortality for people receiving general anesthesia in operating room settings. Patient safety has not been similarly targeted for the several million children annually in the United States who receive moderate sedation without endotracheal intubation. Critical event analyses have documented that hypoxemia secondary to depressed respiratory activity is a principal risk factor for near misses and death in this population. Current guidelines for monitoring patient safety during moderate sedation in children call for continuous pulse oximetry and visual assessment, which may not detect alveolar hypoventilation until arterial oxygen desaturation has occurred. Microstream capnography may provide an “early warning system” by generating real-time waveforms of respiratory activity in nonintubated patients. OBJECTIVE. The aim of this study was to determine whether intervention based on capnography indications of alveolar hypoventilation reduces the incidence of arterial oxygen desaturation in nonintubated children receiving moderate sedation for nonsurgical procedures. PARTICIPANTS AND METHODS. We included 163 children undergoing 174 elective gastrointestinal procedures with moderate sedation in a pediatric endoscopy unit in a randomized, controlled trial. All of the patients received routine care, including 2-L supplemental oxygen via nasal cannula. Investigators, patients, and endoscopy staff were blinded to additional capnography monitoring. In the intervention arm, trained independent observers signaled to clinical staff if capnograms indicated alveolar hypoventilation for >15 seconds. In the control arm, observers signaled if capnograms indicated alveolar hypoventilation for >60 seconds. Endoscopy nurses responded to signals in both arms by encouraging patients to breathe deeply, even if routine patient monitoring did not indicate a change in respiratory status. OUTCOME MEASURES. Our primary outcome measure was patient arterial oxygen desaturation defined as a pulse oximetry reading of 5 seconds. Secondary outcome measures included documented assessments of abnormal ventilation, termination of the procedure secondary to concerns for patient safety, as well as other more rare adverse events including need for bag-mask ventilation, sedation reversal, or seizures. RESULTS. Children randomly assigned to the intervention arm were significantly less likely to experience arterial oxygen desaturation than children in the control arm. Two study patients had documented adverse events, with no procedures terminated for patient safety concerns. Intervention and control patients did not differ in baseline characteristics. Endoscopy staff documented poor ventilation in 3% of all procedures and no apnea. Capnography indicated alveolar hypoventilation during 56% of procedures and apnea during 24%. We found no change in magnitude or statistical significance of the intervention effect when we adjusted the analysis for age, sedative dose, or other covariates. CONCLUSIONS. The results of this controlled effectiveness trial support routine use of microstream capnography to detect alveolar hypoventilation and reduce hypoxemia during procedural sedation in children. In addition, capnography allowed early detection of arterial oxygen desaturation because of alveolar hypoventilation in the presence of supplemental oxygen. The current standard of care for monitoring all patients receiving sedation relies overtly on pulse oximetry, which does not measure ventilation. Most medical societies and regulatory organizations consider moderate sedation to be safe but also acknowledge serious associated risks, including suboptimal ventilation, airway obstruction, apnea, hypoxemia, hypoxia, and cardiopulmonary arrest. The results of this controlled trial suggest that microstream capnography improves the current standard of care for monitoring sedated children by allowing early detection of respiratory compromise, prompting intervention to minimize hypoxemia. Integrating capnography into patient monitoring protocols may ultimately improve the safety of nonintubated patients receiving moderate sedation.

241 citations


Network Information
Related Topics (5)
Intensive care
98.9K papers, 3.1M citations
79% related
Lung
44.3K papers, 1.3M citations
78% related
Intensive care unit
40.6K papers, 1.1M citations
76% related
Sepsis
35K papers, 1M citations
75% related
Asthma
52.8K papers, 1.6M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023114
2022173
202173
202071
201949
201860