scispace - formally typeset
Search or ask a question
Topic

Hypoxia (medical)

About: Hypoxia (medical) is a research topic. Over the lifetime, 23951 publications have been published within this topic receiving 752666 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Because malignant tumors no longer execute functions necessary for homeostasis (such as the production of adequate amounts of adenosine triphosphate), the physiology-based definitions of the term "hypoxia" are not necessarily valid for malignant tumor patients.
Abstract: Tissue hypoxia results from an inadequate supply of oxygen (O(2)) that compromises biologic functions. Evidence from experimental and clinical studies increasingly points to a fundamental role for hypoxia in solid tumors. Hypoxia in tumors is primarily a pathophysiologic consequence of structurally and functionally disturbed microcirculation and the deterioration of diffusion conditions. Tumor hypoxia appears to be strongly associated with tumor propagation, malignant progression, and resistance to therapy, and it has thus become a central issue in tumor physiology and cancer treatment. Biochemists and clinicians (as well as physiologists) define hypoxia differently; biochemists define it as O(2)-limited electron transport, and physiologists and clinicians define it as a state of reduced O(2) availability or decreased O(2) partial pressure that restricts or even abolishes functions of organs, tissues, or cells. Because malignant tumors no longer execute functions necessary for homeostasis (such as the production of adequate amounts of adenosine triphosphate), the physiology-based definitions of the term "hypoxia" are not necessarily valid for malignant tumors. Instead, alternative definitions based on clinical, biologic, and molecular effects that are observed at O(2) partial pressures below a critical level have to be applied.

2,539 citations

Journal ArticleDOI
TL;DR: Solid tumours contain regions at very low oxygen concentrations (hypoxia), often surrounding areas of necrosis, which provides an opportunity for tumour-selective therapy, including prodrugs activated by Hypoxia, hypoxia-specific gene therapy, targeting the hypoxIA-inducible factor 1 transcription factor, and recombinant anaerobic bacteria.
Abstract: Solid tumours contain regions at very low oxygen concentrations (hypoxia), often surrounding areas of necrosis. The cells in these hypoxic regions are resistant to both radiotherapy and chemotherapy. However, the existence of hypoxia and necrosis also provides an opportunity for tumour-selective therapy, including prodrugs activated by hypoxia, hypoxia-specific gene therapy, targeting the hypoxia-inducible factor 1 transcription factor, and recombinant anaerobic bacteria. These strategies could turn what is now an impediment into a significant advantage for cancer therapy.

2,428 citations

Journal ArticleDOI
30 Jul 1998-Nature
TL;DR: It is shown that hypoxia and hypoglycaemia reduce proliferation and increase apoptosis in wild-type (Hif-1α+/+) embryonic stem (ES) cells, but not in ES cells with inactivated HIF-1 α genes (HIF- 1α−/−), suggesting that there are at least two different adaptive responses to being deprived of oxygen and nutrients.
Abstract: As a result of deprivation of oxygen (hypoxia) and nutrients, the growth and viability of cells is reduced. Hypoxia-inducible factor (HIF)-1alpha helps to restore oxygen homeostasis by inducing glycolysis, erythropoiesis and angiogenesis. Here we show that hypoxia and hypoglycaemia reduce proliferation and increase apoptosis in wild-type (HIF-1alpha+/+) embryonic stem (ES) cells, but not in ES cells with inactivated HIF-1alpha genes (HIF-1alpha-/-); however, a deficiency of HIF-1alpha does not affect apoptosis induced by cytokines. We find that hypoxia/hypoglycaemia-regulated genes involved in controlling the cell cycle are either HIF-1alpha-dependent (those encoding the proteins p53, p21, Bcl-2) or HIF-1alpha-independent (p27, GADD153), suggesting that there are at least two different adaptive responses to being deprived of oxygen and nutrients. Loss of HIF-1alpha reduces hypoxia-induced expression of vascular endothelial growth factor, prevents formation of large vessels in ES-derived tumours, and impairs vascular function, resulting in hypoxic microenvironments within the tumour mass. However, growth of HIF-1alpha tumours was not retarded but was accelerated, owing to decreased hypoxia-induced apoptosis and increased stress-induced proliferation. As hypoxic stress contributes to many (patho)biological disorders, this new role for HIF-1alpha in hypoxic control of cell growth and death may be of general pathophysiological importance.

2,391 citations

Journal ArticleDOI
04 Jan 1996-Nature
TL;DR: It is proposed that hypoxia provides a physiological selective pressure in tumours for the expansion of variants that have lost their apoptotic potential, and in particular for cells acquiring p53mutations.
Abstract: Apoptosis is a genetically encoded programme of cell death that can be activated under physiological conditions and may be an important safeguard against tumour development. Regions of low oxygen (hypoxia) and necrosis are common features of solid tumours. Here we report that hypoxia induces apoptosis in oncogenically transformed cells and that further genetic alterations, such as loss of the p53 tumour-suppressor gene or overexpression of the apoptosis-inhibitor protein Bcl-2, substantially reduce hypoxia-induced cell death. Hypoxia also selects for cells with defects in apoptosis, because small numbers of transformed cells lacking p53 overtake similar cells expressing wild-type p53 when treated with hypoxia. Furthermore, highly apoptotic regions strongly correlate with hypoxic regions in transplanted tumours expressing wild-type p53, whereas little apoptosis occurs in hypoxic regions of p53-deficient tumours. We propose that hypoxia provides a physiological selective pressure in tumours for the expansion of variants that have lost their apoptotic potential, and in particular for cells acquiring p53 mutations.

2,266 citations

Journal ArticleDOI
TL;DR: Brain damage in the Levine preparation (unilateral common carotid artery ligation with hypoxia) consists of ischemic neuronal alterations in the ipsilateral forebrain in 7‐day‐postnatal rats.
Abstract: Brain damage in the Levine preparation (unilateral common carotid artery ligation with hypoxia) consists of ischemic neuronal alterations in the ipsilateral forebrain. As the model has been restricted to adult animals, unilateral common carotid artery ligation was carried out in 7-day-postnatal rats. Four to 8 hours later the 25 pups were exposed to 8% oxygen at 37 degrees C for 3.5 hours. Controls consisted of littermates subjected to carotid ligation without subsequent hypoxia, hypoxia without prior ligation, and neither ligation nor hypoxia. After hypoxia the animals were returned to their dams and appeared normal for up to 50 hours. All pups were then killed by perfusion-fixation. Moderate to severe ischemic neuronal changes were seen in the ipsilateral cerebral cortex, striatum, and hippocampus in at least 90% of the animals and included infarction in 56% of the brains. Cortical damage was occasionally laminar but more often occurred in columns at right angles to the pial surface. Unlike adult animals, there was necrosis of white matter, greater ipsilaterally, originating in and spreading from myelinogenic foci. The evolution of ischemic cell change and the associated gliomesodermal reaction was more rapid than in the adult. In 22 additional pups subjected to carotid artery ligation and hypoxia, brains were analyzed for water content. Significant increases (0.6 to 3.3%) in water content of the ipsilateral hemispheres occurred in 11 of 22 brains (50%). Unilateral ischemia combined with hypoxia in developing rats therefore results in neuronal destruction in the same brain regions as in adult animals, but also causes necrosis of white matter. The incidence of increased water content was similar to that of overt infarction. Thus, as previously shown in the adult, brain edema is a consequence rather than a cause of major ischemic damage in the immature animal.

2,001 citations


Network Information
Related Topics (5)
Inflammation
76.4K papers, 4M citations
86% related
Blood pressure
139.2K papers, 4.2M citations
85% related
Receptor
159.3K papers, 8.2M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
84% related
Protein kinase A
68.4K papers, 3.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202210
2021929
2020840
2019827
2018855
2017869