scispace - formally typeset
Search or ask a question
Topic

Ignition system

About: Ignition system is a research topic. Over the lifetime, 58356 publications have been published within this topic receiving 554185 citations. The topic is also known as: ignition unit.


Papers
More filters
Book
21 Apr 2006
TL;DR: In this article, the authors present an overview of the history of fire and its application in the field of fire safety, including a discussion of the role of mass and energy conservation in chemical reactions.
Abstract: Preface. Nomenclature. 1 Introduction to Fire. 1.1 Fire in History. 1.2 Fire and Science. 1.3 Fire Safety and Research in the Twentieth Century. 1.4 Outlook for the Future. 1.5 Introduction to This Book. 2 Thermochemistry. 2.1 Introduction. 2.2 Chemical Reactions. 2.3 Gas Mixture. 2.4 Conservation Laws for Systems. 2.5 Heat of Formation. 2.6 Application of Mass and Energy Conservation in Chemical Reactions. 2.7 Combustion Products in Fire. 3 Conservation Laws for Control Volumes. 3.1 Introduction. 3.2 The Reynolds Transport Theorem. 3.3 Relationship between a Control Volume and System Volume. 3.4 Conservation of Mass. 3.5 Conservation of Mass for a Reacting Species. 3.6 Conservation of Momentum. 3.7 Conservation of Energy for a Control Volume. 4 Premixed Flames. 4.1 Introduction. 4.2 Reaction Rate. 4.3 Autoignition. 4.4 Piloted Ignition. 4.5 Flame Speed, Su. 4.6 Quenching Diameter. 4.7 Flammability Limits. 4.8 Empirical Relationships for the Lower Flammability Limit. 4.9 A Quantitative Analysis of Ignition, Propagation and Extinction. 5 Spontaneous Ignition. 5.1 Introduction. 5.2 Theory of Spontaneous Ignition. 5.3 Experimental Methods. 5.4 Time for Spontaneous Ignition. 6 Ignition of Liquids. 6.1 Introduction. 6.2 Flashpoint. 6.3 Dynamics of Evaporation. 6.4 Clausius-Clapeyron Equation. 6.5 Evaporation Rates. 7 Ignition of Solids. 7.1 Introduction. 7.2 Estimate of Ignition Time Components. 7.3 Pure Conduction Model for Ignition. 7.4 Heat Flux in Fire. 7.5 Ignition in Thermally Thin Solids. 7.6 Ignition of a Thermally Thick Solid. 7.7 Ignition Properties of Common Materials. 8 Fire Spread on Surfaces and Through Solid Media. 8.1 Introduction. 8.2 Surface Flame Spread - The Thermally Thin Case. 8.3 Transient Effects. 8.4 Surface Flame Spread for a Thermally Thick Solid. 8.5 Experimental Considerations for Solid Surface Spread. 8.6 Some Fundamental Results for Surface Spread. 8.7 Examples of Other Flame Spread Conditions. 9 Burning Rate. 9.1 Introduction. 9.2 Diffusive Burning of Liquid Fuels. 9.3 Diffusion Flame Variables. 9.4 Convective Burning for Specific Flow Conditions. 9.5 Radiation Effects on Burning. 9.6 Property Values for Burning Rate Calculations. 9.7 Suppression and Extinction of Burning. 9.8 The Burning Rate of Complex Materials. 9.9 Control Volume Alternative to the Theory of Diffusive Burning. 9.10 General Considerations for Extinction Based on Kinetics. 9.10.1 A demonstration of the similarity of extinction in premixed and diffusion flames. 9.11 Applications to Extinction for Diffusive Burning. 10 Fire Plumes. 10.1 Introduction. 10.2 Buoyant Plumes. 10.3 Combusting Plumes. 10.4 Finite Real Fire Effects. 10.5 Transient Aspects of Fire Plumes. 10.5.1 Starting plume. 10.5.2 Fireball or thermal. 11 Compartment Fires. 11.1 Introduction. 11.2 Fluid Dynamics. 11.3 Heat Transfer. 11.4 Fuel Behavior. 11.5 Zone Modeling and Conservation Equations. 11.6 Correlations. 11.7 Semenov Diagrams, Flashover and Instabilities. 12 Scaling and Dimensionless Groups. 12.1 Introduction. 12.2 Approaches for Establishing Dimensionless Groups. 12.3 Dimensionless Groups from the Conservation Equations. 12.4 Examples of Specific Correlations. 12.5 Scale Modeling. Appendix. Flammability Properties. Archibald Tewarson. Index.

599 citations

Journal ArticleDOI
TL;DR: In this article, a dual-fuel engine with high-cetane fuel and natural gas injection is used to provide a source of ignition for the charge of a spark-ignition (SI) engine.

595 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed chemical kinetic mechanism for hydrogen and H2/CO (syngas) mixtures has been updated, rate constants have been adjusted to reflect new experimental information obtained at high pressures and new rate constant values recently published in the literature, and good agreement was observed.

576 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental concepts for how to devise and apply quantitative measurement techniques for studies of fuel concentration, temperature, and fuel/air ratio in practical combustion systems, with some emphasis on internal combustion engines.

561 citations

Journal ArticleDOI
TL;DR: In this article, a conceptual model for low-temperature combustion (LTC) diesel engines is proposed, which describes spray formation, vaporization, mixing, ignition, and pollutant formation and destruction mechanisms that are consistent with experimental observations and modeling predictions.

560 citations


Network Information
Related Topics (5)
Combustion
172.3K papers, 1.9M citations
92% related
Laminar flow
56K papers, 1.2M citations
80% related
Turbulence
112.1K papers, 2.7M citations
80% related
Heat transfer
181.7K papers, 2.9M citations
79% related
Reynolds number
68.4K papers, 1.6M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,420
20222,643
20211,468
20201,740
20192,152