scispace - formally typeset

Topic

Image gradient

About: Image gradient is a(n) research topic. Over the lifetime, 7798 publication(s) have been published within this topic receiving 159296 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: There is a natural uncertainty principle between detection and localization performance, which are the two main goals, and with this principle a single operator shape is derived which is optimal at any scale.
Abstract: This paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal assumptions about the form of the solution. We define detection and localization criteria for a class of edges, and present mathematical forms for these criteria as functionals on the operator impulse response. A third criterion is then added to ensure that the detector has only one response to a single edge. We use the criteria in numerical optimization to derive detectors for several common image features, including step edges. On specializing the analysis to step edges, we find that there is a natural uncertainty principle between detection and localization performance, which are the two main goals. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussian-smoothed image. We extend this simple detector using operators of several widths to cope with different signal-to-noise ratios in the image. We present a general method, called feature synthesis, for the fine-to-coarse integration of information from operators at different scales. Finally we show that step edge detector performance improves considerably as the operator point spread function is extended along the edge.

26,639 citations

Journal ArticleDOI
TL;DR: A technique for image encoding in which local operators of many scales but identical shape serve as the basis functions, which tends to enhance salient image features and is well suited for many image analysis tasks as well as for image compression.
Abstract: We describe a technique for image encoding in which local operators of many scales but identical shape serve as the basis functions. The representation differs from established techniques in that the code elements are localized in spatial frequency as well as in space. Pixel-to-pixel correlations are first removed by subtracting a lowpass filtered copy of the image from the image itself. The result is a net data compression since the difference, or error, image has low variance and entropy, and the low-pass filtered image may represented at reduced sample density. Further data compression is achieved by quantizing the difference image. These steps are then repeated to compress the low-pass image. Iteration of the process at appropriately expanded scales generates a pyramid data structure. The encoding process is equivalent to sampling the image with Laplacian operators of many scales. Thus, the code tends to enhance salient image features. A further advantage of the present code is that it is well suited for many image analysis tasks as well as for image compression. Fast algorithms are described for coding and decoding.

6,550 citations

Proceedings ArticleDOI
27 Jun 2004
TL;DR: This paper examines (and improves upon) the local image descriptor used by SIFT, and demonstrates that the PCA-based local descriptors are more distinctive, more robust to image deformations, and more compact than the standard SIFT representation.
Abstract: Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid (June 2003) recently evaluated a variety of approaches and identified the SIFT [D. G. Lowe, 1999] algorithm as being the most resistant to common image deformations. This paper examines (and improves upon) the local image descriptor used by SIFT. Like SIFT, our descriptors encode the salient aspects of the image gradient in the feature point's neighborhood; however, instead of using SIFT's smoothed weighted histograms, we apply principal components analysis (PCA) to the normalized gradient patch. Our experiments demonstrate that the PCA-based local descriptors are more distinctive, more robust to image deformations, and more compact than the standard SIFT representation. We also present results showing that using these descriptors in an image retrieval application results in increased accuracy and faster matching.

3,203 citations

Journal ArticleDOI
TL;DR: A novel feature similarity (FSIM) index for full reference IQA is proposed based on the fact that human visual system (HVS) understands an image mainly according to its low-level features.
Abstract: Image quality assessment (IQA) aims to use computational models to measure the image quality consistently with subjective evaluations. The well-known structural similarity index brings IQA from pixel- to structure-based stage. In this paper, a novel feature similarity (FSIM) index for full reference IQA is proposed based on the fact that human visual system (HVS) understands an image mainly according to its low-level features. Specifically, the phase congruency (PC), which is a dimensionless measure of the significance of a local structure, is used as the primary feature in FSIM. Considering that PC is contrast invariant while the contrast information does affect HVS' perception of image quality, the image gradient magnitude (GM) is employed as the secondary feature in FSIM. PC and GM play complementary roles in characterizing the image local quality. After obtaining the local quality map, we use PC again as a weighting function to derive a single quality score. Extensive experiments performed on six benchmark IQA databases demonstrate that FSIM can achieve much higher consistency with the subjective evaluations than state-of-the-art IQA metrics.

3,083 citations

Journal ArticleDOI
TL;DR: This work uses a simple statistical analysis to impose one image's color characteristics on another by choosing an appropriate source image and applying its characteristic to another image.
Abstract: We use a simple statistical analysis to impose one image's color characteristics on another. We can achieve color correction by choosing an appropriate source image and apply its characteristic to another image.

2,177 citations

Network Information
Related Topics (5)
Image processing

229.9K papers, 3.5M citations

90% related
Feature (computer vision)

128.2K papers, 1.7M citations

90% related
Image segmentation

79.6K papers, 1.8M citations

89% related
Feature extraction

111.8K papers, 2.1M citations

89% related
Support vector machine

73.6K papers, 1.7M citations

85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20223
202160
202068
201999
2018102
2017219