scispace - formally typeset
Search or ask a question
Topic

Image gradient

About: Image gradient is a research topic. Over the lifetime, 7798 publications have been published within this topic receiving 159296 citations.


Papers
More filters
Proceedings ArticleDOI
01 Feb 1997
TL;DR: It is shown that CCV’s can give superior results to color histogram-based methods for comparing images that incorporates spatial information, and to whom correspondence should be addressed tograms for image retrieval.
Abstract: Color histograms are used to compare images in many applications. Their advantages are efficiency, and insensitivity to small changes in camera viewpoint. However, color histograms lack spatial information, so images with very different appearances can have similar histograms. For example, a picture of fall foliage might contain a large number of scattered red pixels; this could have a similar color histogram to a picture with a single large red object. We describe a histogram-based method for comparing images that incorporates spatial information. We classify each pixel in a given color bucket as either coherent or incoherent, based on whether or not it is part of a large similarly-colored region. A color coherence vector (CCV) stores the number of coherent versus incoherent pixels with each color. By separating coherent pixels from incoherent pixels, CCV’s provide finer distinctions than color histograms. CCV’s can be computed at over 5 images per second on a standard workstation. A database with 15,000 images can be queried for the images with the most similar CCV’s in under 2 seconds. We show that CCV’s can give superior results to color his∗To whom correspondence should be addressed tograms for image retrieval.

931 citations

Proceedings ArticleDOI
04 Oct 2008
TL;DR: An image super-resolution approach using a novel generic image prior - gradient profile prior, which is a parametric prior describing the shape and the sharpness of the image gradients is proposed.
Abstract: In this paper, we propose an image super-resolution approach using a novel generic image prior - gradient profile prior, which is a parametric prior describing the shape and the sharpness of the image gradients. Using the gradient profile prior learned from a large number of natural images, we can provide a constraint on image gradients when we estimate a hi-resolution image from a low-resolution image. With this simple but very effective prior, we are able to produce state-of-the-art results. The reconstructed hi-resolution image is sharp while has rare ringing or jaggy artifacts.

928 citations

01 Jan 1998
TL;DR: An overview of research in edge detection is proposed: edge definition, properties of detectors, the methodology of edge detection, the mutual influence between edges and detectors, and existing edge detectors and their implementation.
Abstract: In computer vision and image processing, edge detection concerns the localization of significant variations of the grey level image and the identification of the physical phenomena that originated them. This information is very useful for applications in 3D reconstruction, motion, recognition, image enhancement and restoration, image registration, image compression, and so on. Usually, edge detection requires smoothing and differentiation of the image. Differentiation is an ill-conditioned problem and smoothing results in a loss of information. It is difficult to design a general edge detection algorithm which performs well in many contexts and captures the requirements of subsequent processing stages. Consequently, over the history of digital image processing a variety of edge detectors have been devised which differ in their mathematical and algorithmic properties. This paper is an account of the current state of our understanding of edge detection. We propose an overview of research in edge detection: edge definition, properties of detectors, the methodology of edge detection, the mutual influence between edges and detectors, and existing edge detectors and their implementation.

829 citations

Journal ArticleDOI
TL;DR: A hybrid multidimensional image segmentation algorithm is proposed, which combines edge and region-based techniques through the morphological algorithm of watersheds and additionally maintains the so-called nearest neighbor graph, due to which the priority queue size and processing time are drastically reduced.
Abstract: A hybrid multidimensional image segmentation algorithm is proposed, which combines edge and region-based techniques through the morphological algorithm of watersheds. An edge-preserving statistical noise reduction approach is used as a preprocessing stage in order to compute an accurate estimate of the image gradient. Then, an initial partitioning of the image into primitive regions is produced by applying the watershed transform on the image gradient magnitude. This initial segmentation is the input to a computationally efficient hierarchical (bottom-up) region merging process that produces the final segmentation. The latter process uses the region adjacency graph (RAG) representation of the image regions. At each step, the most similar pair of regions is determined (minimum cost RAG edge), the regions are merged and the RAG is updated. Traditionally, the above is implemented by storing all RAG edges in a priority queue. We propose a significantly faster algorithm, which additionally maintains the so-called nearest neighbor graph, due to which the priority queue size and processing time are drastically reduced. The final segmentation provides, due to the RAG, one-pixel wide, closed, and accurately localized contours/surfaces. Experimental results obtained with two-dimensional/three-dimensional (2-D/3-D) magnetic resonance images are presented.

794 citations

Journal ArticleDOI
11 Oct 2000
TL;DR: In this article, the authors proposed to include spatial information by combining mutual information with a term based on the image gradient of the images to be registered, which not only seeks to align locations of high gradient magnitude, but also aims for a similar orientation of the gradients at these locations.
Abstract: Mutual information has developed into an accurate measure for rigid and affine monomodality and multimodality image registration. The robustness of the measure is questionable, however. A possible reason for this is the absence of spatial information in the measure. The present paper proposes to include spatial information by combining mutual information with a term based on the image gradient of the images to be registered. The gradient term not only seeks to align locations of high gradient magnitude, but also aims for a similar orientation of the gradients at these locations. Results of combining both standard mutual information as well as a normalized measure are presented for rigid registration of three-dimensional clinical images [magnetic resonance (MR), computed tomography (CT), and positron emission tomography (PET)]. The results indicate that the combined measures yield a better registration function does mutual information or normalized mutual information per se. The registration functions are less sensitive to low sampling resolution, do not contain incorrect global maxima that are sometimes found in the mutual information function, and interpolation-induced local minima can be reduced. These characteristics yield the promise of more robust registration measures. The accuracy of the combined measures is similar to that of mutual information-based methods.

687 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
90% related
Feature (computer vision)
128.2K papers, 1.7M citations
90% related
Image segmentation
79.6K papers, 1.8M citations
89% related
Feature extraction
111.8K papers, 2.1M citations
89% related
Support vector machine
73.6K papers, 1.7M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202328
202293
202160
202068
201999
2018102