scispace - formally typeset
Search or ask a question

Showing papers on "Image processing published in 2012"


Journal ArticleDOI
TL;DR: The origins, challenges and solutions of NIH Image and ImageJ software are discussed, and how their history can serve to advise and inform other software projects.
Abstract: For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.

44,587 citations


Journal ArticleDOI
TL;DR: Radiomics--the high-throughput extraction of large amounts of image features from radiographic images--addresses this problem and is one of the approaches that hold great promises but need further validation in multi-centric settings and in the laboratory.

3,411 citations


Journal ArticleDOI
TL;DR: This paper introduces a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points and successfully reduces variability and avoids over-regularization.

1,949 citations


Journal ArticleDOI
TL;DR: "Radiomics" refers to the extraction and analysis of large amounts of advanced quantitative imaging features with high throughput from medical images obtained with computed tomography, positron emission tomography or magnetic resonance imaging, leading to a very large potential subject pool.

1,608 citations


Book
16 Nov 2012
TL;DR: The article introduces digital image restoration to the reader who is just beginning in this field, and provides a review and analysis for the readers who may already be well-versed in image restoration.
Abstract: The article introduces digital image restoration to the reader who is just beginning in this field, and provides a review and analysis for the reader who may already be well-versed in image restoration. The perspective on the topic is one that comes primarily from work done in the field of signal processing. Thus, many of the techniques and works cited relate to classical signal processing approaches to estimation theory, filtering, and numerical analysis. In particular, the emphasis is placed primarily on digital image restoration algorithms that grow out of an area known as "regularized least squares" methods. It should be noted, however, that digital image restoration is a very broad field, as we discuss, and thus contains many other successful approaches that have been developed from different perspectives, such as optics, astronomy, and medical imaging, just to name a few. In the process of reviewing this topic, we address a number of very important issues in this field that are not typically discussed in the technical literature.

1,588 citations


Journal ArticleDOI
TL;DR: An efficient general-purpose blind/no-reference image quality assessment (IQA) algorithm using a natural scene statistics model of discrete cosine transform (DCT) coefficients, which requires minimal training and adopts a simple probabilistic model for score prediction.
Abstract: We develop an efficient general-purpose blind/no-reference image quality assessment (IQA) algorithm using a natural scene statistics (NSS) model of discrete cosine transform (DCT) coefficients. The algorithm is computationally appealing, given the availability of platforms optimized for DCT computation. The approach relies on a simple Bayesian inference model to predict image quality scores given certain extracted features. The features are based on an NSS model of the image DCT coefficients. The estimated parameters of the model are utilized to form features that are indicative of perceptual quality. These features are used in a simple Bayesian inference approach to predict quality scores. The resulting algorithm, which we name BLIINDS-II, requires minimal training and adopts a simple probabilistic model for score prediction. Given the extracted features from a test image, the quality score that maximizes the probability of the empirically determined inference model is chosen as the predicted quality score of that image. When tested on the LIVE IQA database, BLIINDS-II is shown to correlate highly with human judgments of quality, at a level that is competitive with the popular SSIM index.

1,484 citations


Book
14 Feb 2012
TL;DR: Spatial organization and recognition are shown to be a practical basis for current systems and to provide a promising path for further development of improved visual capabilities.
Abstract: A computational model is presented for the visual recognition of three-dimensional objects based upon their spatial correspondence with two-dimensional features in an image A number of components of this model are developed in further detail and implemented as computer algorithms At the highest level, a verification process has been developed which can determine exact values of viewpoint and object parameters from hypothesized matches between three-dimensional object features and two-dimensional image features This provides a reliable quantitative procedure for evaluating the correctness of an interpretation, even in the presence of noise or occlusion Given a reliable method for final evaluation of correspondence, the remaining components of the system are aimed at reducing the size of the search space which must be covered Unlike many previous approaches, this recognition process does not assume that it is possible to directly derive depth information from the image Instead, the primary descriptive component is a process of perceptual organization, in which spatial relations are detected directly among two-dimensional image features A basic requirement of the recognition process is that perceptual organization should accurately distinguish meaningful groupings from those which arise by accident of viewpoint or position This requirement is used to derive a number of further constraints which must be satisfied by algorithms for perceptual grouping A specific algorithm is presented for the problem of segmenting curves into natural descriptions Methods are also presented for using the viewpoint-invariance properties of the perceptual groupings to infer three-dimensional relations directly from the image The search process itself is described, both for covering the range of possible viewpoints and the range of possible objects A method is presented for using evidential reasoning to combine information from multiple sources to determine the most efficient ordering for the search This use of evidential reasoning allows a system to automatically improve its performance as it gains visual experience In summary, spatial organization and recognition are shown to be a practical basis for current systems and to provide a promising path for further development of improved visual capabilities

1,263 citations


Journal ArticleDOI
TL;DR: In this paper, a generic objectness measure is proposed to quantify how likely an image window is to contain an object of any class, such as cows and telephones, from amorphous background elements such as grass and road.
Abstract: We present a generic objectness measure, quantifying how likely it is for an image window to contain an object of any class. We explicitly train it to distinguish objects with a well-defined boundary in space, such as cows and telephones, from amorphous background elements, such as grass and road. The measure combines in a Bayesian framework several image cues measuring characteristics of objects, such as appearing different from their surroundings and having a closed boundary. These include an innovative cue to measure the closed boundary characteristic. In experiments on the challenging PASCAL VOC 07 dataset, we show this new cue to outperform a state-of-the-art saliency measure, and the combined objectness measure to perform better than any cue alone. We also compare to interest point operators, a HOG detector, and three recent works aiming at automatic object segmentation. Finally, we present two applications of objectness. In the first, we sample a small numberof windows according to their objectness probability and give an algorithm to employ them as location priors for modern class-specific object detectors. As we show experimentally, this greatly reduces the number of windows evaluated by the expensive class-specific model. In the second application, we use objectness as a complementary score in addition to the class-specific model, which leads to fewer false positives. As shown in several recent papers, objectness can act as a valuable focus of attention mechanism in many other applications operating on image windows, including weakly supervised learning of object categories, unsupervised pixelwise segmentation, and object tracking in video. Computing objectness is very efficient and takes only about 4 sec. per image.

1,223 citations


Journal ArticleDOI
TL;DR: It is demonstrated with a change blindness data set that the distance between images induced by the image signature is closer to human perceptual distance than can be achieved using other saliency algorithms, pixel-wise, or GIST descriptor methods.
Abstract: We introduce a simple image descriptor referred to as the image signature. We show, within the theoretical framework of sparse signal mixing, that this quantity spatially approximates the foreground of an image. We experimentally investigate whether this approximate foreground overlaps with visually conspicuous image locations by developing a saliency algorithm based on the image signature. This saliency algorithm predicts human fixation points best among competitors on the Bruce and Tsotsos [1] benchmark data set and does so in much shorter running time. In a related experiment, we demonstrate with a change blindness data set that the distance between images induced by the image signature is closer to human perceptual distance than can be achieved using other saliency algorithms, pixel-wise, or GIST [2] descriptor methods.

929 citations


Journal ArticleDOI
TL;DR: In this paper, linear-time algorithms for solving a class of problems that involve transforming a cost function on a grid using spatial information are described, where the binary image is replaced by an arbitrary function on the grid.
Abstract: We describe linear-time algorithms for solving a class of problems that involve transforming a cost function on a grid using spatial information. These problems can be viewed as a generalization of classical distance transforms of binary images, where the binary image is replaced by an arbitrary function on a grid. Alternatively they can be viewed in terms of the minimum convolution of two functions, which is an important operation in grayscale morphology. A consequence of our techniques is a simple and fast method for computing the Euclidean distance transform of a binary image. Our algorithms are also applicable to Viterbi decoding, belief propagation, and optimal control.

925 citations



Journal ArticleDOI
TL;DR: The proposed IQA scheme is designed to follow the masking effect and visibility threshold more closely, i.e., the case when both masked and masking signals are small is more effectively tackled by the proposed scheme.
Abstract: In this paper, we propose a new image quality assessment (IQA) scheme, with emphasis on gradient similarity. Gradients convey important visual information and are crucial to scene understanding. Using such information, structural and contrast changes can be effectively captured. Therefore, we use the gradient similarity to measure the change in contrast and structure in images. Apart from the structural/contrast changes, image quality is also affected by luminance changes, which must be also accounted for complete and more robust IQA. Hence, the proposed scheme considers both luminance and contrast-structural changes to effectively assess image quality. Furthermore, the proposed scheme is designed to follow the masking effect and visibility threshold more closely, i.e., the case when both masked and masking signals are small is more effectively tackled by the proposed scheme. Finally, the effects of the changes in luminance and contrast-structure are integrated via an adaptive method to obtain the overall image quality score. Extensive experiments conducted with six publicly available subject-rated databases (comprising of diverse images and distortion types) have confirmed the effectiveness, robustness, and efficiency of the proposed scheme in comparison with the relevant state-of-the-art schemes.


Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a single image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis, which first decomposes an image into the low and high-frequency (HF) parts using a bilateral filter.
Abstract: Rain removal from a video is a challenging problem and has been recently investigated extensively. Nevertheless, the problem of rain removal from a single image was rarely studied in the literature, where no temporal information among successive images can be exploited, making the problem very challenging. In this paper, we propose a single-image-based rain removal framework via properly formulating rain removal as an image decomposition problem based on morphological component analysis. Instead of directly applying a conventional image decomposition technique, the proposed method first decomposes an image into the low- and high-frequency (HF) parts using a bilateral filter. The HF part is then decomposed into a “rain component” and a “nonrain component” by performing dictionary learning and sparse coding. As a result, the rain component can be successfully removed from the image while preserving most original image details. Experimental results demonstrate the efficacy of the proposed algorithm.

Journal Article
TL;DR: This paper has compared several techniques for edge detection in image processing and found that the most efficient and scalable approach is the one that focuses on directly detecting the edges of an image.
Abstract: Edge detection is one of the most commonly used operations in image analysis, andthere are probably more algorithms in the literature for enhancing and detecting edgesthan any other single subject. The reason for this is that edges form the outline of anobject. An edge is the boundary between an object and the background, and indicatesthe boundary between overlapping objects. This means that if the edges in an image canbe identified accurately, all of the objects can be located and basic properties such asarea, perimeter, and shape can be measured. Since computer vision involves theidentification and classification of objects in an image, edge detections is an essential tool. In this paper, we have compared several techniques for edge detection in image processing.

Journal ArticleDOI
TL;DR: A method for real-time 3D object instance detection that does not require a time-consuming training stage, and can handle untextured objects, and is much faster and more robust with respect to background clutter than current state-of-the-art methods is presented.
Abstract: We present a method for real-time 3D object instance detection that does not require a time-consuming training stage, and can handle untextured objects. At its core, our approach is a novel image representation for template matching designed to be robust to small image transformations. This robustness is based on spread image gradient orientations and allows us to test only a small subset of all possible pixel locations when parsing the image, and to represent a 3D object with a limited set of templates. In addition, we demonstrate that if a dense depth sensor is available we can extend our approach for an even better performance also taking 3D surface normal orientations into account. We show how to take advantage of the architecture of modern computers to build an efficient but very discriminant representation of the input images that can be used to consider thousands of templates in real time. We demonstrate in many experiments on real data that our method is much faster and more robust with respect to background clutter than current state-of-the-art methods.

Journal ArticleDOI
TL;DR: This paper conducts a comparative study on 12 selected image fusion metrics over six multiresolution image fusion algorithms for two different fusion schemes and input images with distortion and relates the results to an image quality measurement.
Abstract: Comparison of image processing techniques is critically important in deciding which algorithm, method, or metric to use for enhanced image assessment. Image fusion is a popular choice for various image enhancement applications such as overlay of two image products, refinement of image resolutions for alignment, and image combination for feature extraction and target recognition. Since image fusion is used in many geospatial and night vision applications, it is important to understand these techniques and provide a comparative study of the methods. In this paper, we conduct a comparative study on 12 selected image fusion metrics over six multiresolution image fusion algorithms for two different fusion schemes and input images with distortion. The analysis can be applied to different image combination algorithms, image processing methods, and over a different choice of metrics that are of use to an image processing expert. The paper relates the results to an image quality measurement based on power spectrum and correlation analysis and serves as a summary of many contemporary techniques for objective assessment of image fusion algorithms.

Journal ArticleDOI
TL;DR: Thorough experimental results suggest that the proposed SR method can reconstruct higher quality results both quantitatively and perceptually and propose a maximum a posteriori probability framework for SR recovery.
Abstract: Image super-resolution (SR) reconstruction is essentially an ill-posed problem, so it is important to design an effective prior. For this purpose, we propose a novel image SR method by learning both non-local and local regularization priors from a given low-resolution image. The non-local prior takes advantage of the redundancy of similar patches in natural images, while the local prior assumes that a target pixel can be estimated by a weighted average of its neighbors. Based on the above considerations, we utilize the non-local means filter to learn a non-local prior and the steering kernel regression to learn a local prior. By assembling the two complementary regularization terms, we propose a maximum a posteriori probability framework for SR recovery. Thorough experimental results suggest that the proposed SR method can reconstruct higher quality results both quantitatively and perceptually.

Journal ArticleDOI
TL;DR: A bottom-up aggregation approach to image segmentation that takes into account intensity and texture distributions in a local area around each region and incorporates priors based on the geometry of the regions, providing a complete hierarchical segmentation of the image.
Abstract: We present a bottom-up aggregation approach to image segmentation. Beginning with an image, we execute a sequence of steps in which pixels are gradually merged to produce larger and larger regions. In each step, we consider pairs of adjacent regions and provide a probability measure to assess whether or not they should be included in the same segment. Our probabilistic formulation takes into account intensity and texture distributions in a local area around each region. It further incorporates priors based on the geometry of the regions. Finally, posteriors based on intensity and texture cues are combined using “ a mixture of experts” formulation. This probabilistic approach is integrated into a graph coarsening scheme, providing a complete hierarchical segmentation of the image. The algorithm complexity is linear in the number of the image pixels and it requires almost no user-tuned parameters. In addition, we provide a novel evaluation scheme for image segmentation algorithms, attempting to avoid human semantic considerations that are out of scope for segmentation algorithms. Using this novel evaluation scheme, we test our method and provide a comparison to several existing segmentation algorithms.

Journal ArticleDOI
TL;DR: This work describes canonical ways to measure an algorithm’s performance so that algorithms can be compared against each other fairly, and provides an optional framework to do so conveniently within CellProfiler.
Abstract: as a resource for testing and validating automated image-analysis algorithms. The BBBC is particularly useful for high-throughput experiments and for providing biological ground truth for evaluating image-analysis algorithms. If an algorithm is sufficiently robust across samples to handle high-throughput experiments, lowthoughput applications also benefit because tolerance to variability in sample preparation and imaging makes the algorithm more likely to generalize to new image sets. Each image set in the BBBC is accompanied by a brief description of its motivating biological application and a set of groundtruth data against which algorithms can be evaluated. The ground truth sets can consist of cell or nucleus counts, foreground and background pixels, outlines of individual objects, or biological labels based on treatment conditions or orthogonal assays (such as a dose-response curve or positiveand negative-control images). We describe canonical ways to measure an algorithm’s performance so that algorithms can be compared against each other fairly, and we provide an optional framework to do so conveniently within CellProfiler. For each image set, we list any published results of which we are aware. The BBBC is freely available from http://www.broadinstitute. org/bbbc/. The collection currently contains 18 image sets, including images of cells (Homo sapiens and Drosophila melanogaster) as well as of whole organisms (Caenorhabditis elegans) assayed in high throughput. We are continuing to extend the collection during the course of our research, and we encourage the submission of additional image sets, ground truth and published results of algorithms.

Journal ArticleDOI
TL;DR: Nonparametric Bayesian methods are considered for recovery of imagery based upon compressive, incomplete, and/or noisy measurements and significant improvements in image recovery are manifested using learned dictionaries, relative to using standard orthonormal image expansions.
Abstract: Nonparametric Bayesian methods are considered for recovery of imagery based upon compressive, incomplete, and/or noisy measurements. A truncated beta-Bernoulli process is employed to infer an appropriate dictionary for the data under test and also for image recovery. In the context of compressive sensing, significant improvements in image recovery are manifested using learned dictionaries, relative to using standard orthonormal image expansions. The compressive-measurement projections are also optimized for the learned dictionary. Additionally, we consider simpler (incomplete) measurements, defined by measuring a subset of image pixels, uniformly selected at random. Spatial interrelationships within imagery are exploited through use of the Dirichlet and probit stick-breaking processes. Several example results are presented, with comparisons to other methods in the literature.

Journal ArticleDOI
TL;DR: STIR, an Open Source object-oriented library in C++ for 3D PET reconstruction, is presented, which enhances its flexibility and modular design, but also adds extra capabilities such as list mode reconstruction, more data formats etc.
Abstract: We present a new version of STIR (Software for Tomographic Image Reconstruction), an open source object-oriented library implemented in C++ for 3D positron emission tomography reconstruction. This library has been designed such that it can be used for many algorithms and scanner geometries, while being portable to various computing platforms. This second release enhances its flexibility and modular design and includes additional features such as Compton scatter simulation, an additional iterative reconstruction algorithm and parametric image reconstruction (both indirect and direct). We discuss the new features in this release and present example results. STIR can be downloaded from http://stir.sourceforge.net.

Book
09 Oct 2012
TL;DR: This book is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab, and contains extensive new material on Haar wavelets, Viola-Jones, bilateral filtering, SURF, PCA-SIFT, moving object detection and tracking.
Abstract: This book is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab. Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated. As one reviewer noted, "The main strength of the proposed book is the exemplar code of the algorithms." Fully updated with the latest developments in feature extraction, including expanded tutorials and new techniques, this new edition contains extensive new material on Haar wavelets, Viola-Jones, bilateral filtering, SURF, PCA-SIFT, moving object detection and tracking, development of symmetry operators, LBP texture analysis, Adaboost, and a new appendix on color models. Coverage of distance measures, feature detectors, wavelets, level sets and texture tutorials has been extended. * Named a 2012 Notable Computer Book for Computing Methodologies by Computing Reviews* Essential reading for engineers and students working in this cutting-edge field* Ideal module text and background reference for courses in image processing and computer vision* The only currently available text to concentrate on feature extraction with working implementation and worked through derivation

Journal ArticleDOI
TL;DR: Karl Friston began the SPM project around 1991 and the rest of the history is history.

Patent
30 Jan 2012
TL;DR: In this paper, a system for collecting data comprising a mobile terminal for capturing a plurality of frames of image data, the mobile terminal having a first imaging assembly and a second imaging assembly, was proposed, wherein the system for use in collecting data is operative for associating first frame information and second frame information.
Abstract: A system for collecting data comprising a mobile terminal for capturing a plurality of frames of image data, the mobile terminal having a first imaging assembly and a second imaging assembly, the first imaging assembly for capturing a first frame of image data representing a first object and the second imaging assembly for capturing a second frame of image data representing a second object, wherein the system for use in collecting data is operative for associating first frame information and second frame information, the first frame information including one or more of image data of the first frame of image data and information derived utilizing the image data of the first frame of image data, the second frame information including one or more of image data of the second frame of image data and information derived utilizing the image data of the second frame of image data.

Patent
26 Jun 2012
TL;DR: In this paper, an optical indicia reading terminal including a housing, a multiple pixel image sensor disposed within the housing, an imaging lens assembly configured to focus an image of decodable indicia on the image sensor, an optical bandpass filter disposed in an optical path of light incident on the sensor, and an analog-to-digital (A/D) converter configured to convert an analog signal read out of an image sensor into a digital signal representative of the analog signal.
Abstract: Methods for using an optical indicia reading terminal including a housing, a multiple pixel image sensor disposed within the housing, an imaging lens assembly configured to focus an image of decodable indicia on the image sensor, an optical bandpass filter disposed in an optical path of light incident on the image sensor, an analog-to-digital (A/D) converter configured to convert an analog signal read out of the image sensor into a digital signal representative of the analog signal, and processor configured to output a decoded message data corresponding to the decodable indicia by processing the digital signal.

Journal ArticleDOI
12 Mar 2012-PLOS ONE
TL;DR: A novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters is presented.
Abstract: The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP) has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available.

Journal ArticleDOI
Bin Yang1, Shutao Li1
TL;DR: The simultaneous orthogonal matching pursuit technique is introduced to guarantee that different source images are sparsely decomposed into the same subset of dictionary bases, which is the key to image fusion.

Journal ArticleDOI
TL;DR: The problem of automatic “reduced-reference” image quality assessment (QA) algorithms from the point of view of image information change is studied and algorithms that require just a single number from the reference for QA are shown to correlate very well with subjective quality scores.
Abstract: We study the problem of automatic “reduced-reference” image quality assessment (QA) algorithms from the point of view of image information change. Such changes are measured between the reference- and natural-image approximations of the distorted image. Algorithms that measure differences between the entropies of wavelet coefficients of reference and distorted images, as perceived by humans, are designed. The algorithms differ in the data on which the entropy difference is calculated and on the amount of information from the reference that is required for quality computation, ranging from almost full information to almost no information from the reference. A special case of these is algorithms that require just a single number from the reference for QA. The algorithms are shown to correlate very well with subjective quality scores, as demonstrated on the Laboratory for Image and Video Engineering Image Quality Assessment Database and the Tampere Image Database. Performance degradation, as the amount of information is reduced, is also studied.

Journal ArticleDOI
TL;DR: The proposed image retargeting algorithm effectively preserves the visually important regions for images, efficiently removes the less crucial regions, and therefore significantly outperforms the relevant state-of-the-art algorithms, as demonstrated with the in-depth analysis in the extensive experiments.
Abstract: Saliency detection plays important roles in many image processing applications, such as regions of interest extraction and image resizing. Existing saliency detection models are built in the uncompressed domain. Since most images over Internet are typically stored in the compressed domain such as joint photographic experts group (JPEG), we propose a novel saliency detection model in the compressed domain in this paper. The intensity, color, and texture features of the image are extracted from discrete cosine transform (DCT) coefficients in the JPEG bit-stream. Saliency value of each DCT block is obtained based on the Hausdorff distance calculation and feature map fusion. Based on the proposed saliency detection model, we further design an adaptive image retargeting algorithm in the compressed domain. The proposed image retargeting algorithm utilizes multioperator operation comprised of the block-based seam carving and the image scaling to resize images. A new definition of texture homogeneity is given to determine the amount of removal block-based seams. Thanks to the directly derived accurate saliency information from the compressed domain, the proposed image retargeting algorithm effectively preserves the visually important regions for images, efficiently removes the less crucial regions, and therefore significantly outperforms the relevant state-of-the-art algorithms, as demonstrated with the in-depth analysis in the extensive experiments.